

Groundwater Supply Investigation for the Uis Tin Project, Namibia

Hydrogeological Assessment

Prepared for: AfriTin Mining (Namibia) (Pty) Ltd Project Number: AFT7220

June 2022

Digby Wells and Associates (Pty) Ltd Company Registration: 1999/005985/07 Turnberry Office Park, Digby Wells House. 48 Grosvenor Road, Bryanston,2191 Phone: +27 (0) 11 789 9495 Fax: +27 (0) 11 789 9498 E-mail: <u>info@digbywells.com</u> Website: www.digbywells.com Directors: J Leaver (Chairman)*, NA Mehlomakulu*, DJ Otto, LF Stevens, GE Trusler, RA Williams* *Non-Executive

This document has been prepared by Digby Wells Environmental.

Report Type:	Hydrogeological Assessment
Project Name:	Groundwater Supply Investigation for the Uis Tin Project, Namibia
Project Code:	AFT7220

Name	Responsibility	Signature	Date
Megan Edwards	Report Writer		30 June 2022
Arjan van 't Zelfde	Numerical Modeller and Report Review	and the	30 June 2022
Andre van Coller	Report Review	all	30 June 2022

This report is provided solely for the purposes set out in it and may not, in whole or in part, be used for any other purpose without Digby Wells Environmental prior written consent.

EXECUTIVE SUMMARY

Digby Wells Environmental (hereinafter Digby Wells) was appointed by AfriTin Mining (Namibia) (Pty) Ltd (hereinafter AfriTin) to undertake a water supply assessment for their planned expansion of production at the Uis Tin Mine, in Namibia.

The pilot plant is currently producing ~65 tonnes of tin concentrate per month for Phase 1 Stage I, with a water demand of ~0.288 MI/day (12 m³/hr). The expansion of the pilot processing plant to Phase 1 Stage II will increase production at the mine to ~100 tonnes of tin concentrate per month, which will increase the water demand of the plant to ~0.432 MI/day (18 m³/hr). Water is currently sourced from water supply boreholes in the Uis River channel as well as contributions from water stored within the K5 pit and this investigation assesses whether the water supply boreholes can meet the increased demand for the planned 18-year Life of Mine of the Phase 1 Stage II expansion.

A later Phase 2 expansion plans to increase production to ~1 250 tonnes of tin concentrate per month.

Baseline

The project area is characterised by fractured igneous and metamorphic rock aquifers which are overlain by shallow alluvial aquifers in river channels and as surface cover in some areas. The aquifers receive low recharge, with ~0.7% of rainfall (average of 88 mm/a) reaching the aquifer. Stormwater runoff flows via the Uis River tributary towards the Ugab River located to the north of the project area. The mine is located on the Uis River near the water divide between the Ugab and Omaruru River Catchments.

Water supply boreholes for the mine have been drilled in the Uis River and an unnamed river tributary to the south of the mine, which comprise the Uis and Southern wellfields. The alluvial aquifer in these channel has an average thickness of 5.5 m and are important for recharging the underlying fractured aquifers. The fractured aquifer is weathered to an average depth of 25 m and has a higher fracture frequency to depths of 50 m. Although the fracture frequency decreases below 50 m, high yielding fractures can still be intersected in this low fractured aquifer. The groundwater levels (pre-abstraction) range between 15 - 37 mbgl indicating the water table is in the weathered fractured aquifer.

The quality of the groundwater indicates the groundwater has a long residence time in the aquifer, allowing rock-water interaction processes to occur. These processes result in elevated concentrations of chloride, sulphate, sodium, calcium, magnesium and nitrate which elevate the electrical conductivity levels in the groundwater. The groundwater quality is classified as Group D for all water supply boreholes in the Uis and Southern wellfields, which is the highest health risk category and is not suitable for human consumption based on the drinking water guideline limits for Namibia.

Field Assessments

Ten (10) water supply boreholes were aquifer tested by Hammerstein Mining and Drilling between December 2021 and January 2022. The results indicate that the hydraulic conductivities range between 0.1 - 3.5 m/d, with an average of 0.8 m/d and the transmissivities range between 0.6 - 586 m²/d, with an average of 51 m²/d. These ranges are comparable to the previous 2018 aquifer test results for the water supply boreholes as well as aquifer parameters available in literature sources.

The aquifer test results were used to determine the sustainable yield for the water supply boreholes. The sustainable yield ranges between $0.2 - 8.5 \text{ m}^3/\text{hr}$ with a cumulative $18.7 \text{ m}^3/\text{hr}$ for the 10 water supply boreholes. This yield just meets the demand for the Phase 1 Stage II expansion and therefore it is recommended to locate (potentially three boreholes) or drill additional boreholes to supplement water supply during borehole maintain periods or replace boreholes if scaling or fouling reduces the capacity of existing boreholes.

Numerical Model Findings

The numerical model was used to simulate the sustainable yield (18.7 m³/hr) abstractions from the water supply boreholes for the planned 18-year Life of Mine and assess the impact of cumulative abstraction from known third-party boreholes.

The simulation indicates that the abstraction of water supply for the mine of $18 \text{ m}^3/\text{hr}$ is deemed to be sustainable for the planned Life of Mine. However, the aquifer will be stressed due to the low recharge potential in the region. The cone of drawdown will extend over time reaching a maximum of ~6.5 km from the mine with a regional drawdown of ~4.5 m in 2040 (when compared against the current situation) because of the abstractions.

Should there be any significant increases in the demand from the aquifer (by the mine or thirdparty groundwater users) or as a result of draughts or climate change there may be an impact to the long-term sustainable yield of the wellfields.

Water Management Plan

The Phase 1 Stage II expansion will require 127 440 m³ per year (at 18 m³/hr) for the planned 18 years. The water stored within the K5 pit can provide 190 634 m³ which would supply the plant for ~1.5 years. This can be used to supplement the supply from the water supply boreholes during maintenance periods until the K5 Pit will need to be dewatered for mining to continue.

The sustainable yield from the current water supply boreholes will just meet the demand for the Phase 1 Stage II expansion (at 18.7 m³/hr) and therefore it is recommended to locate or drill additional boreholes which can be used to supplement water supply during borehole maintenance periods or replace boreholes if scaling or fouling reduces the capacity of existing boreholes.

It is recommended that the water supply boreholes be cleaned every 2-years to remove sediment, debris, roots and deposits of iron, calcium and magnesium from the borehole and/or pumps to maintain the capacity of the boreholes. However, cleaning may be required on a more frequent basis. Frequently monitoring the borehole yields and drawdowns will provide an indication on when boreholes will need to be cleaned.

Current aquifer testing observations indicates that BH2 has a reduced yield compared to what was originally achieved and BH9 has issues with roots and oxide deposits. Cleaning the boreholes may improve the current sustainable yield results which would allow the water supply boreholes to be used in a more flexible schedule rather than all boreholes operating for ~20 hours per day every day.

The groundwater monitoring programme must include daily rainfall measurements, weekly groundwater level measurements (in actively used water supply boreholes), quarterly groundwater level measurements (in unused water supply boreholes) and water quality sampling which will allow the mine to timeously detect any changes in the aquifers which may affect the water supply potential so alternative water sources can be investigated and implemented.

Conclusions

- The yield demand for the Phase 1 Stage II expansion of 18 m³/hr can be provided by the existing water supply boreholes which have a combined sustainable yield of 18.7 m³/hr based on the interpreted aquifer test results;
- The groundwater quality is not suitable for human consumption, however it can be used as raw water supply in the plant;
- Based on the numerical model simulations the water supply abstractions is deemed to be sustainable, however the water supply abstractions will stress the aquifer due to the low recharge potential of the region. The cumulative abstractions for the proposed 18-year Life of Mine will create a drawdown cone with a maximum extent of ~6.5 km and a drawdown of ~4.5 m;
- Should there be any significant increases in demand from the aquifer (by the mine or third-party groundwater users), draughts or climate changes there may be an impact to the long-term sustainable yield of the wellfield;
- AfriTin will need to install additional boreholes for the Phase 1 Stage II expansion to enable maintenance and to mitigate any losses in yield from the existing water supply boreholes;
- A groundwater monitoring programme has been recommended to assist AfriTin with managing their groundwater resource. Although it is recommended that boreholes be cleaned every two (2) years, any drop in yield or increased drawdown within the water supply borehole can indicate that maintenance is required;

- The groundwater monitoring will also assist AfriTin with determining if there are any changes occurring within the aquifer which may require intervention;
- AfriTin will need to investigate alternative water sources for the planned Phase 2 expansion once water demands for this phase have been confirmed. Abstracting higher yields of groundwater from the possible alternative groundwater wellfields could potentially have significant impacts to the groundwater aquifer in the region. Alternative water supply options such as piping water from the Orano Desalination plant or directly from the sea should also be considered for the Phase 2 expansion.

Recommendations

- Integrate the groundwater outcomes into the site water balance to assist with the efficient management of water resources on site and identify and minimise water losses from the system;
- Implement the monitoring, operational and maintenance requirements as outlined in the Water Management Plan (Section 6);
- Schedule borehole maintenance every 2 years unless the monitoring data (yield vs drawdown) indicates more frequent cleaning is required (Section 6.1);
- Locate or drill alternative boreholes to replace the existing boreholes if yields cannot be improved or maintained or to supplement water supply during borehole maintenance periods (after the K5 pit has been drained);
- Establish a covered water storage area nearby to the plant which contains water storage tanks with a minimum capacity of 1 week (~2 700 m³) which can provide an emergency water source to the plant;
- AfriTin will need to amend their permitted abstraction volume to account for the required 18 m³/hr (127 440 m³/a) required by the plant for the Phase 1 Stage II expansion;
- Locate third-party groundwater users within a minimum 10 km radius of the mine wellfields and confirm their current abstraction requirements and planned future abstraction requirements;
- It is recommended to plan the dewatering of the K5 pit well in advance so the dewatered volumes can be used to meet the plant requirements instead of being discharged to the environment. The water in the pit has higher concentrations of calcium, magnesium, sodium, potassium chloride, sulphate, iron, manganese and electrical conductivity compared to the groundwater samples which may dictate how much of the pit water can be used during a month (if this needs to be diluted with clean or groundwater contributions). The water quality requirements of the plant will therefore need to be defined as soon as possible or the establishment of a water treatment plant could be considered;

- The numerical model must be recalibrated every 2 (two) years to incorporate the latest monitoring data as well as any changes to the water supply network or plant yield requirements. The model will be an asset to AfriTin to assess any changes which could affect the water supply for the project;
- The numerical model can be refined in future updates to simulate climate change responses to the expected rainfall volumes over the life of mine. The IPCC report indicates that drought events in Southern Africa (caused by the El Nino oscillation) are predicted to become more frequent and intense, which could affect the recharge potential to aquifers in the region.

TABLE OF CONTENTS

	In	troduction	1	1
2.	St	tudy Assu	mptions and Limitations	1
3.	Ba	aseline De	escription	2
3.	1.	Climate.		2
3.	.2.	Topogra	phy and Drainage	2
3.	.3.	Geology	·	6
3.	.4.	Hydroge	ology	9
	3.4	.1. Gro	undwater Levels	9
	3.4	.2. Gro	oundwater Quality	14
	3	3.4.2.1.	Hydrochemistry	14
	3	3.4.2.2.	Quality	19
	3	3.4.2.3.	Corrosion	20
	3.4	.3. Aqu	uifer Testing	29
4.	С	onceptual	Model	35
4.	.1.	Sources		35
	4.1	.1. Rec	charge	35
4.	4.1 2.	.1. Rec Pathway	charge /s	35 35
4.	4.1 .2. 4.2	.1. Rec Pathway .1. Aqu	charge /s uifers	35 35 35
4.	4.1 2. 4.2 4	.1. Rec Pathway .1. Aqu I.2.1.1.	charge /s uifers Alluvial Aquifer	35 35 35 35
4.	4.1 .2. 4.2 4 4	.1. Rec Pathway .1. Aqu I.2.1.1. I.2.1.2.	charge /s uifers Alluvial Aquifer Fractured Aquifer	35 35 35 35 36
4.	4.1 .2. 4.2 4 .3.	.1. Rec Pathway .1. Aqu I.2.1.1. I.2.1.2. Recepto	charge /s. uifers Alluvial Aquifer Fractured Aquifer rs.	
4. 4. 5.	4.1 .2. 4.2 4 .3. Nu	.1. Rec Pathway .1. Aqu I.2.1.1. I.2.1.2. Recepto umerical N	charge /s. uifers Alluvial Aquifer Fractured Aquifer rs.	35 35 35 35 36 36 37
4. 4. 5. 5.	4.1 2. 4.2 4 .3. Nu .1.	.1. Rec Pathway .1. Aqu I.2.1.1. I.2.1.2. Recepto umerical N Model C	charge /s uifers Alluvial Aquifer Fractured Aquifer rs Model onfidence Level Classification	35 35 35 36 36 36 37 37
4. 5. 5. 5.	4.1 2. 4.2 4 3. Ni 1. 2.	.1. Rec Pathway .1. Aqu I.2.1.1. I.2.1.2. Recepto umerical M Model C Model S	charge /s uifers Alluvial Aquifer Fractured Aquifer rs Model onfidence Level Classification etup	35 35 35 36 36 36 37 37 37
4. 5. 5. 5.	4.1 2. 4.2 4 3. Nu 1. 2. 5	.1. Rec Pathway .1. Aqu I.2.1.1. I.2.1.2. Recepto umerical M Model C Model S 5.2.1.1.	charge /s uifers Alluvial Aquifer Fractured Aquifer rs Model onfidence Level Classification etup Model Domain	
4. 5. 5. 5.	4.1 2. 4.2 4 3. 1. 2. 5 5	.1. Rec Pathway .1. Aqu I.2.1.1. I.2.1.2. Recepto umerical M Model C Model S 5.2.1.1.	charge /s uifers Alluvial Aquifer Fractured Aquifer rs Model onfidence Level Classification etup Model Domain Time Discretisation	
4. 5. 5. 5.	4.1 2. 4.2 4 3. 1. 2. 5 5 5	.1. Rec Pathway .1. Aqu I.2.1.1. I.2.1.2. Recepto umerical M Model C Model S 5.2.1.1. 5.2.1.2.	charge /s uifers Alluvial Aquifer Fractured Aquifer rs Model onfidence Level Classification etup Model Domain Time Discretisation Boundary Conditions	

		5.2	.1.5.	Steady State Simulation4	4									
		5.2	.1.6.	Aquifer Hydraulic Conductivity4	-5									
		5.2	.1.7.	Other Model Parameters: Recharge4	6									
	5.3.	S	ensitivit	sitivity Analysis										
	5.4.	S	imulate	ulated Water Levels and Flow Direction4										
	5.5.	N	Model Outcomes											
	5.	.5.1.	Rec	harge Scenarios5	52									
6.	١	Wate	er Mana	igement Plan5	57									
	6.1.	K	5 Pit W	ater Use5	57									
	6.2.	W	Vater Su	upply Borehole Use5	57									
	6.	.2.1.	Add	itional Abstraction Boreholes6	60									
	6.	.2.2.	Bore	ehole Maintenance6	60									
	6.	.2.3.	Gro	undwater Monitoring6	51									
	6.3.	W	Vater Ma	anagement Recommendations6	62									
7.	(Cond	clusion .	6	3									
8.	I	Reco	ommeno	dations6	\$4									
9.	I	Refe	erences.	ε	35									

LIST OF FIGURES

Figure 3-1: Average Monthly Rainfall per Station (1979 – 2014)	3
Figure 3-2: Annual Rainfall per Station (1979 – 2020)	4
Figure 3-3: Topography and Drainage	5
Figure 3-4: Regional Geology	7
Figure 3-5: Fracture Frequency in Water Supply Boreholes	8
Figure 3-6: Water Supply Boreholes	8
Figure 3-7: Water Supply Borehole Locations	. 11
Figure 3-8: Groundwater Levels in Historical Water Supply Boreholes	. 12
Figure 3-9: Groundwater Levels in Current Water Supply Boreholes	. 13
Figure 3-10: Groundwater Abstraction Volumes	. 14

Figure 3-11: Piper Diagram	16
Figure 3-12: Expanded Durov	17
Figure 3-13: STIFF Diagrams	
Figure 3-14: Electrical Conductivity Trends	
Figure 3-15: Chloride and Sulphate Trends	
Figure 3-16: Magnesium and Sodium Trends	
Figure 5-1: Numerical Model Domain, Grid and Boundaries	41
Figure 5-2: Oblique Model View	42
Figure 5-3: Model Cross-Sections	43
Figure 5-4: Steady State Calibration Results	
Figure 5-5: Model Parameter Relative Composite Sensitivity	47
Figure 5-6: Steady-State Groundwater Levels and Calibration Results	48
Figure 5-7: Simulated Drawdowns in BH1	49
Figure 5-8: Simulated Drawdowns in BH2	50
Figure 5-9: Simulated Drawdowns in BH8	50
Figure 5-10: Simulated Drawdowns in BH9	51
Figure 5-11: Simulated Drawdowns in BH10	51
Figure 5-12: Pre-Abstraction Simulated Groundwater Levels and Annual Rainfall Inp	uts 54
Figure 5-13: Simulated Groundwater Levels (Current Conditions)	55
Figure 5-14: Simulated Drawdown Cones for 2025, 2030, 2035 and 2040	56
Figure 6-1: Water Supply Boreholes and Potential Alternative Boreholes	

LIST OF TABLES

Table 3-1: Regional Stratigraphy	6
Table 3-2: Water Level Summary Table	. 10
Table 3-3: Groundwater Quality of Water Supply Boreholes Compared to the Guidelines Safe Drinking Water	for 21
Table 3-4: Corrosion/Scaling Indices	.28
Table 3-5: Aquifer Test Summary	31
Table 3-6: Summary of Hydraulic Parameters	.32

Table 3-7: Summary of Previous Aquifer Test Parameters	. 33
Table 3-8: Sustainable Yield Interpretations	. 34
Table 5-1: Identification of Real-World Boundaries and Adopted Model Boundary Condition	ons . 39
Table 5-2: Annual Recharge Values for Hydrogeological Units	. 40
Table 5-3: Mass Balance: Steady State Model	. 45
Table 5-4: steady State Model Calibrated Hydraulic Conductivities	. 45
Table 5-5: Abstracting Groundwater for Water Supply	. 53
Table 6-1: Water Supply Borehole Management Plan	. 58
Table 6-2: Water Quality Monitoring Constituents	. 62

LIST OF APPENDICES

- Appendix A: Methodology
- Appendix B: Laboratory Certificates
- Appendix C: Aquifer Test Results
- Appendix D: Impact Assessment Methodology

1. Introduction

Digby Wells Environmental (hereinafter Digby Wells) was appointed by AfriTin Mining (Namibia) (Pty) Ltd (hereinafter AfriTin) to undertake a water supply assessment for the planned expansion of production at the Uis Tin Mine, in Namibia.

Currently the pilot processing plant in operation for the Phase 1 Stage I project produces ~65 tonnes of tin concentrate per month. Water demand for the Phase 1 Stage I plant requires ~0.288 MI/day (12 m³/hr), which is sourced from the Uis wellfield boreholes, located in the alluvial aquifer of the Uis River. AfriTin has completed a Definitive Feasibility Study (DFS) for the expansion of its Phase 1 Stage I Pilot Processing Facility, which will occur in two phases. The Phase 1 Stage II expansion is a precursor to the long-term Phase 2 expansion, which aims to increase the mining area and develop a full-scale processing plant for the mine.

The expansion of the pilot processing plant for Phase 1 Stage II will increase production to ~100 tonnes of tin concentrate per month, which will increase the water demand of the plant to ~0.432 Ml/day (18 m³/hr). The Phase 2 expansion plans to increase production to ~1 250 tonnes of tin concentrate per month. The water demand for the Phase 2 expansion still needs to be confirmed.

The aim of the water supply assessment is to:

- Verify the potential supply constraints of the Uis wellfield for the planned Phase 1 Stage II expansion; and
- Investigate the regional aquifer systems as an additional source of groundwater for the Phase 2 expansion.

The focus of this report is on the water supply requirements for Phase 1 Stage II and the potential constraints of the Uis wellfield.

2. Study Assumptions and Limitations

Aquifer test study limitations:

- Although boreholes were scheduled to be switched off prior to aquifer testing each of the cluster areas, observation borehole data may be influenced by abstraction in other cluster areas; and
- The community, landowners and other business operations may have boreholes in the riverbed near the Uis and Southern wellfields. Abstraction from these third-party boreholes may influence the aquifer test results.

Numerical Model Assumptions:

 The daily abstractions for third-party groundwater users are unknown and was assumed to be 200 m³/d for the borehole at the Brandberg Rest Camp (which currently being used to supply large volumes for road construction) and 100 m³/d for the NamClay borehole. It is understood that the abstraction from the Brandberg Rest

Camp is only expected to continue for the next 18 months, however the assumed abstraction values for both third party boreholes were modelled for the duration of the Life of Mine as a worse case scenario;

- It is assumed that these abstraction rates will continue as mentioned above for the proposed Phase 1 Stage II Life of Mine;
- The numerical model assumes abstraction boreholes will pump for a 24-hour period however the plant requirements are based on a 90% availability and 90% utilisation target equating to ~19.7- hour abstraction period per day; and
- The numerical model was calibrated with the abstractions and drawdowns currently measured and assumed for the aquifer. The Phase 1 Stage II modelled abstractions start the simulation using the current groundwater levels as reference.

3. Baseline Description

3.1. Climate

Uis is classified as a hot desert climate (BWh) based on the Köppen-Geiger classification system. The BWh classification characterises areas where evaporation and transpiration exceed precipitation with hot to exceptionally hot (over 40°C) periods of the year. Annual rainfall data was collected from four weather stations around the project area, which were measured daily between 1979 and 2014 (Figure 3-1). Rainfall typically occurs between October and April, with the months of February and March receiving the highest rainfall.

The rainfall data is relatively consistent between the weather stations with the highest variability occurring between 2011 - 2015. The annual rainfall for the project area ranges between -2 - 592 mm, with an average of 88 mm per year (National Centers for Environmental Prediction, 2022) (Environmental Compliance Consultancy, 2021) (Environmental Compliance Consultancy, 2021). The period between 2000 - 2017 indicates a wetter period with an average rainfall of 137 mm/a compared with the previous 1979 - 1999 period which had an average rainfall of 54 mm/a. Long-term variations in rainfall will affect recharge to the groundwater aquifers, however, since 1979 there are regular peak rainfall events occurring every 2 - 4 years which will assist in buffering longer-term periods of low recharge.

3.2. Topography and Drainage

The town of Uis is located within the Uis River which is a tributary within the Ugab Catchment Area. The Uis River drains the project area in a north-westerly direction until it joins the Ugab River. The Ugab River is the main river that drains the Ugab Catchment which has an area of \sim 29 000 m². The Ugab Catchment starts in a mountainous region which receives a higher annual rainfall of between \sim 500 - 550 mm (Figure 3-3).

Although the town of Uis is located in the Ugab Catchment Area, the town receives water from the Omaruru River. The Omaruru River drains the Omaruru Catchment which has an area of

~11 500 m^2 and receives an annual rainfall of between ~300 - 350 mm from the mountainous region upstream.

Figure 3-1: Average Monthly Rainfall per Station (1979 – 2014)

Hydrogeological Assessment Groundwater Supply Investigation for the Uis Tin Project, Namibia AFT7220

Figure 3-2: Annual Rainfall per Station (1979 – 2020)

Figure 3-3: Topography and Drainage

Uis Tin Groundwater Supply Investigation

Legend ----- Non-perennial Streams 529 - 613 614 - 661 662 - 700 701 - 733 765 - 794 795 - 823 824 - 853 854 - 885 886 - 915 916 - 942 943 - 969 970 - 997 998 - 1 029 1 030 - 1 157 DIGBY WELLS N A 5 Kilometres © Digby Wells Environmental

3.3. Geology

The 1:250 000 geological map indicates that the project is located within the Southern Kaoko tectonostratigraphic zone of the Damara Orogen (Belt). The Damara Orogen is an East-North-East trending belt formed during the convergence between the Congo and Kalahari Cratons. The belt comprises of multiple fault and shear bounded zones with varying structural styles and lithologies (Gray, et al., 2008).

The regional stratigraphy around the project area (within the Southern Kaoko Zone) comprises of meta-greywacke and meta-pelite lithologies associated with the Amis Formation (Zerrissene Group), post-tectonic granites and isolated dolerite intrusions. The North-East trending Autseib Fault separates the Southern Kaoko Zone (in the North) from the Northern Central tectonostratigraphic zone (to the South) which comprises of mica schists and marbles associated with the Kuiseb and Karibib Formations of the Swakop Group (Figure 3-4). Mineralisation is hosted within granitic pegmatites. The pegmatites intruded into the Amis Formation post-tectonically and are associated with minor faulting (AfriTin Mining, 2017). Boreholes which intersect fractures associated with the pegmatites can be high yielding.

In 2018, eight (8) water supply boreholes were drilled in river channels around the mine (Figure 3-7). The river channels had alluvial gravels between 2 -13 mbgl, with an average of 6 mbgl. Below the gravels the geological logs indicate that quartzite, schist and pegmatite lithologies were intersected (BVW Groundwater Consulting Services, 2019). These lithologies are weathered to depths of between 14 - 50 mbgl (with an average of 25 mbgl) (Figure 3-6). Images of the core from exploration holes indicates that the core samples are highly broken and weathered between 2 - 19 mbgl. Below the weathered zone the core becomes more competent except at fracture and/or faulted zones.

The geological logs for the water supply boreholes indicate fractures were intersected between 27 - 111 mbgl, with an average depth of 46 mbgl (Figure 3-5). Although most boreholes indicate low yields for fractures below 50 mbgl, BH8 did intersect a high yielding fracture at a depth of 85 mbgl (with an estimate yield of 20 m³/hr).

Supergroup	Group	Formation	Lithology	Map Code
			Quaternary sediments	Qs
			Granite (coarse grained)	OgSAs
			Granite (fine-medium grained)	eggp
			Granite (fine-medium grained, leucogranite)	egls
			Granite (medium-course grained, porphyritic)	NgSAp
	Swakon	Kuiseb	Mica schist	NKs
Damara	Зшакор	Karibib	Marbles	NKb
Sequence	Zerrissene	Amis	Meta-greywacke and meta-pelites, minor carbonate and quartz-wacke	NAm

Table 3-1: Regional Stratigraphy

Figure 3-4: Regional Geology

Figure 3-5: Fracture Frequency in Water Supply Boreholes

Figure 3-6: Water Supply Boreholes¹

¹ Lithological logs for BH6, BH11 and BH12 were not available.

3.4. Hydrogeology

Uis is located within the Brandberg – Waterberg hydrogeological region of Namibia bordering with the Northern Namib and Kaokoveld hydrogeological region immediately to the Northwest (Ministry of Agriculture, Water and Rural Development, 2011). Boreholes have been established in the Uis River as far back as 1926 (approximately 3 locations), with historical mining operations drilling an additional 16 boreholes between 1950 and 1960. AfriTin currently have 11 water supply boreholes around their project area (Figure 3-7), 8 of which were drilled in 2018. Seven of the water supply boreholes are located in the Uis wellfield and the remaining four boreholes are in the Southern wellfield.

3.4.1. Groundwater Levels

Historical water level records are limited but indicate that water levels in the Uis River were approximately 16 mbgl in 1926 which is comparable to the water levels currently measured in the Southern wellfield. The boreholes drilled in the Uis River during the 1950's indicate an initial water level of between 18 - 23 mbgl. Historical records indicate that abstraction from these boreholes ranged between 2 - 8 m³/hr. During the five-year monitoring period in the 1950's the groundwater levels dropped to between 31 - 37 mbgl (Figure 3-8). Abstraction would reduce the groundwater levels during this period however the influence of low recharge (or rainfall) may also be a contributing factor but cannot be confirmed.

The current Uis (BH1, BH2, BH8, BH9, BH10) and Southern (BH3, BH4, BH5, BH6) wellfield boreholes were aquifer tested in July 2018. The July 2018 rest groundwater levels (RWL) ranged between 21.0 - 36.9 mbgl, with an average of 26.8 mbgl in the Uis wellfield. The 2018 groundwater levels in the Southern wellfield were shallower ranging between 14.6 - 16.5 mbgl, with an average of 15.2 mbgl.

AfriTin commenced monitoring groundwater levels in six of the Uis wellfield boreholes in September 2020. The monitoring data shows that the groundwater levels in all the monitored boreholes have declined by between 2.4 - 7.8 m (Table 3-2 and Figure 3-9). The largest drop in groundwater levels is within BH2, BH8 and BH10. Although no abstraction has taken place from BH9 and BH12, and a minimal volume has been abstracted from BH2, the groundwater levels in these boreholes show a general decline in levels indicating the aquifer is either being affected by the current abstraction and/or by limited recharge to the aquifer. Abstraction volumes range between 237 m³/month and 12 224 m³/month, with an average of 5 534 m³/month (Figure 3-10).

The Southern wellfield boreholes are not equipped and are not currently in use. Recent water level measurements indicate that the groundwater level in the Southern wellfield have declined by between 1.3 - 1.6 m (Table 3-2 and Figure 3-9). As no abstraction is taking place from these wells, the decline in groundwater levels is associated with low recharge to the catchment or external third-party groundwater use in the catchment.

Between 19 January and 15 February 2022, the site has received approximately 90 mm of rainfall, which has resulted in a rise in groundwater levels of between 0.8 - 8.3 m (Table 3-2).

Groundwater Supply Investigation for the Uis Tin Project, Namibia

AFT7220

Table 3-2: Water Level Summary Table

Borehole	Jul-18	Sep-20	Apr-21	Dec-21	Jan-22	Feb-22	Mar-22 ²	Change in Water Level Prior to Rainfall Event ³	Change in Water Level After Rainfall Event ⁴	Total Volume Abstracted to Date
BH1	21.01	21.43	-	23.85	-	23.10	23.20	-2.42	0.75	10 644
BH2	23.18	25.78	-	29.95	-	29.00	31.00	-4.17	0.95	386
BH3	14.71	-	-	-	15.98	-	-	-1.27	-	-
BH4	15.08	-	-	-	16.66	-	-	-1.58	-	-
BH6	16.51	-	-	-	17.88	-	-	-1.37	-	-
BH8	36.90	-	36.04	40.60	-	35.20	35.20	-4.56	5.40	21 011
BH9	29.98	30.75	-	31.50	33.74	29.20	28.50	-2.99	2.30	-
BH10	23.03	26.82	-	34.60	-	32.90	32.70	-7.78	1.70	40 985
BH11	-	-	-	-	41.25	33.00	32.74	- 8.25		-
BH12	-	28.65	-	31.55	31.90	29.10	28.90	-3.25	2.45	-

² Groundwater level as at 04/03/2022.

³ Change in groundwater level prior to rainfall calculated with Jul-2018/Sept-2020 water levels compared to Dec-2021/Jan-2022 water levels.

⁴ Change in groundwater level after rainfall calculated with Dec-2021 water levels compared to Feb-2022 water levels. Current groundwater levels for March are similar to Feb and therefore comparison has not been updated to March groundwater levels.

Figure 3-7: Water Supply Borehole Locations

Groundwater Supply Investigation for the Uis Tin Project, Namibia

AFT7220

Figure 3-8: Groundwater Levels in Historical Water Supply Boreholes

Groundwater Supply Investigation for the Uis Tin Project, Namibia

AFT7220

Figure 3-9: Groundwater Levels in Current Water Supply Boreholes

Figure 3-10: Groundwater Abstraction Volumes

3.4.2. Groundwater Quality

The laboratory certificates are provided in Appendix B.

3.4.2.1. <u>Hydrochemistry</u>

The chemical composition of natural waters can be interpreted using Piper, Expanded Durov and STIFF Diagrams. The Piper Diagram (Figure 3-11) is useful for identifying different types of groundwater facies which can be improved upon with the Expanded Durov Diagram (Figure 3-12). The Expanded Durov Diagram is useful for interpreting hydrochemical processes such as ion exchange and/or simple dissolution. The STIFF Diagrams (Figure 3-13) are useful to make visual comparisons between samples with different sources.

- The Piper and Expanded Durov Diagrams indicate that the samples can be differentiated into four (4) distinctive groups:
 - A sodium-chloride water type typically indicates groundwater with a long residence time or stagnant (slow moving) groundwater with little to no recharge which typically indicates the end of the hydrogeological cycle or that salts (sodium-chloride) have affected the source. This group is represented by

samples for BH3, BH6, BH8, BH10, BH11 and BH12 and will be referred to as the main sodium-chloride water type group;

- Within the sodium-chloride water type the BH1 and BH9 samples form a separate subgroup on the Piper Diagram with a slightly higher sodium and alkalinity level compared to the other boreholes within this group;
- The K5 pit sample indicates a sodium-chloride water type and plots near to the main sodium-chloride water type group however this sample has a higher sodium concentration comparable to the BH1 and BH9 subgrouping;
- The magnesium-chloride water type typically indicates a mix of different water types or contamination by chlorides. This group is represented by the samples for BH2 and BH4 and although they have a different dominant cation they plot with the main sodium-chloride water type group;
- The STIFF Diagrams indicate BH1 and BH9 have a slightly different signature compared to the other boreholes. BH 1 and BH9 signatures show a smaller influence of sulphate in the signature compared with the other boreholes, however the remaining anions and the cations are comparable to the other signature; and
- The K5 pit sample has a similar signature to the groundwater samples but at significantly higher concentrations.

The project area is characterised by fractured igneous and metamorphic rock aquifers which are overlain by shallow alluvial aquifers in river channels. The aquifers receive low recharge (less than 0.7% MAP or 0.61 mm/a), and the hydrochemistry is therefore representative of groundwater with a long residence time or slow-moving groundwater allowing rock interaction processes to occur over long periods.

The available logs for the water supply boreholes indicate that quartzite (and in some instances schist) was intersected by the boreholes. The slight differences between the water types and signatures may be representative of different rock interactions and/or mixing of different waters during abstraction.

Groundwater Supply Investigation for the Uis Tin Project, Namibia

AFT7220

Figure 3-11: Piper Diagram

Groundwater Supply Investigation for the Uis Tin Project, Namibia

AFT7220

Figure 3-12: Expanded Durov

Groundwater Supply Investigation for the Uis Tin Project, Namibia

AFT7220

Figure 3-13: STIFF Diagrams

3.4.2.2. <u>Quality</u>

There are currently no water quality guideline requirements for the process water used by Uis Tin Mine processing plant. The groundwater quality has therefore been compared to the guidelines for safe drinking water as described by the Namibia Water Corporation (Namibia Water Corporation, 1998) (Department of Water Affairs (Namibia), 1988). The drinking water guideline limits provide a basis of comparison between samples with regards to elevated concentrations. The concentration of and limits for the aesthetic, physical and inorganic determinants define the group into which water will be classified. The water quality has been grouped into 4 quality classes:

- Group A: Water with an excellent quality;
- Group B: Water with acceptable quality;
- Group C: Water with low health risk; and
- Group D: Water with a high health risk, or water unsuitable for human consumption.

Water should ideally be of excellent quality (Group A) or acceptable quality (Group B), however in practice many of the determinants may fall outside the limits for these groups. If water is classified as having a low health risk (Group C), attention should be given to this problem, although the situation is often not critical as yet. If water is classified as having a higher health risk (Group D), urgent and immediate attention should be given to this matter.

The overall quality group, into which water is classified, is determined by the constituent that complies the least with the guidelines for the quality of drinking water. The groundwater quality, in each borehole, compared to the guidelines for drinking-water quality is summarised in Table 3-3.

The overall quality group for all the water supply boreholes and the K5 Pit is Group D. This is due to the elevated concentrations of chloride, sulphate, sodium and to a less extent the slightly elevated calcium, magnesium and nitrate concentrations. Subsequently the electrical conductivity is also elevated in all samples. The observed elevated concentrations are geogenic (naturally occurring), likely as a consequence of the geochemical characteristics of the parent rocks and rock-water interaction.

Five (5) samples were collected during the 48-hour CDT aquifer tests which allows for trend analysis. Time-series trends are provided for pH and electrical conductivity (Figure 3-14), chloride and sulphate (Figure 3-15), and magnesium and sodium (Figure 3-16). There are minor fluctuations between samples for majority of the boreholes, however BH8 and BH11 do show a slight change in concentrations between the samples.

Initially BH8 and BH11 indicated high concentrations for major anions, cations and electrical conductivity which decreased and stabilized after the third sample. BH8 has four (4) fractures at depths of 50 m, 85 m, 106 m and 111 m. The fracture at 85 m is the highest yielding fracture (with an estimate of >20 m³/hr) with the other fractures noted as being small. The change in water quality could initially indicate contributions from the smaller fracture until this is depleted

and the larger deeper fracture provides more water to the borehole. The borehole log for BH11 is not available but based on proximity to BH8, BH11 may have a similar fracture set.

An anomalous spike is present for the fourth sample in BH12, which has water quality results similar to the K5 pit water sample. It was confirmed with Analytical Laboratories that the analysis was correct for this sample. It is unlikely that water from the pit would have been drawn into BH12 as the fifth sample would have shown a change in water quality as well, and therefore it is concluded that there may have been a sampling error for this sample and should therefore be disregarded

3.4.2.3. <u>Corrosion</u>

The equilibrium saturation point of water for calcium carbonate and other salts is described by various indices which provide an indication of the scale-forming or corrosive potential of the water. If water is supersaturated, it is scale forming, whereas if it is undersaturated, it is non-scale forming or corrosive. Corrosion can be a problem in distribution systems and appliances with metallic structures in contact with water.

The following corrosion/scaling indices were calculated:

- Langelier index: A positive Langelier index indicates scale-forming tendency and a negative Langelier index indicates a scale-dissolving tendency, with the possibility of corrosion.
- Ryznar index: A value less than 6.5 indicate scale-forming tendency and a value greater than 6.5 corrosive tendency.
- Corrosion ratio: A ratio less than 0.1 indicates general freedom from corrosion in neutral to slightly alkaline oxygenated waters. Higher ratios indicate a tendency towards progressive corrosion, that is, aggressive waters.

A summary of the corrosion/scaling indices is shown in Table 3-4. The groundwater observed in all the water supply boreholes and the K5 Pit sample is scale-forming and has progressive corrosion tendencies.

Groundwater Supply Investigation for the Uis Tin Project, Namibia

AFT7220

Ormatikusen (s)	Gι	uidelines Consu	For Hum mption	an	BH1	BH1	BH1	BH1	BH1	BH2	BH2	BH2	BH2	BH2	BH10	BH10	BH10	BH10	BH10
Constituents	Group A	Group B	Group C	Group D	07/12/21 08:56	07/12/21 19:00	08/12/21 05:03	08/12/21 15:01	19/12/21 13:55	03/12/21 15:59	04/12/21 06:42	04/12/21 16:10	05/12/21 12:35	05/12/21 16:00	13/12/21 11:00	13/12/21 19:00	14/12/21 05:00	14/12/21 20:00	15/12/21 12:00
рН	6-9	5.5- 9.5	4-11	<4- >11	7.5	7.5	7.2	7.1	7.1	7.1	6.7	6.9	7	6.97	7	7	7.1	6.9	6.9
Electrical Conductivity mS/m	150	300	400	>400	535	530	532	531	536	651	652	652	654	657	658	664	668	670	670
Total Dissolved Solids ⁶	-	-	-	-	3,295	3,213	3,210	3,181	3,190	4,126	4,195	4,096	4,120	4,148	4,100	4,164	4,164	4,241	4,386
Turbidity	1	5	10	>10	1.3	0.35	0.95	0.29	0.62	26	0.3	0.55	0.35	0.6	0.5	0.7	0.75	0.4	0.4
Calcium as Ca	150	200	400	>400	199	229	230	228	198	434	426	434	428	427	377	376	361	368	369
Magnesium as Mg	70	100	200	>200	117	120	121	118	122	180	182	178	180	183	176	174	178	173	175
Sodium as Na	100	400	800	>800	799	778	761	776	791	791	778	790	787	790	832	866	874	894	892
Potassium as K	200	400	800	>800	32	31	31	30	31	32	32	31	31	31	34	33	34	34	34
Total Alkalinity as CaCO ₃	-	-	-	-	525	550	545	550	550	395	395	400	410	405	410	420	420	435	425
Total Alkalinity as CaCO ₃	-	-	-	-	525	550	545	550	550	395	395	400	410	405	410	420	420	435	425
Chloride as Cl	250	600	1200	>1200	1,060	1,037	1,037	991	1,037	1,383	1,452	1,406	1,429	1,406	1,383	1,360	1,383	1,406	1,429
Sulphate as SO ₄	200	600	1200	>1200	561	531	550	528	534	992	1,002	932	942	1,008	948	981	964	1,002	1,002
Nitrate as N	10	20	40	>40	47	35	34	40	33	17	19	19	17	13	23	27	26	23	52
Nitrite as N	-	-	-	-	0.01	0.01	0.02	0.02	<0.01	<0.01	<0.01	0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fluoride as F	1.5	2	3	>3	1.8	1.9	1.9	2	1.9	1.3	1.3	1.2	1.2	1.2	1.5	1.6	1.6	1.6	1.6
Iron as Fe	0.1	1	2	>2	0.01	0.01	<0.01	0.01	0.01	2.2	0.01	0.01	0.01	0.01	<0.01	0.01	0.01	0.01	0.01
Manganese as Mn	0.05	1	2	>2	<0.01	0.01	0.01	0	0.01	0.06	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Ammonia as N	1	2	4	>4	<0.02	<0.02	<0.02	<0.02	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Total Hardness as CaCO ₃	300	650	1300	>1300	979	1,066	1,073	1,055	997	1,825	1,813	1,817	1,810	1,820	1,666	1,655	1,634	1,631	1,642
Ca-Hardness as CaCO ₃	375	500	1000	>1000	497	572	574	569	494	1,084	1,064	1,084	1,069	1,066	941	939	901	919	921
Mg-Hardness as CaCO ₃	290	420	840	>840	482	494	498	486	502	741	749	733	741	754	725	717	733	712	721
Overall Quality Group ⁷	-	-	-	-	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D

 ⁵ All constituents are in mg/l unless otherwise stated.
⁶ Calculated value
⁷ The overall quality group into which a water is classified, is determined by the determinant that complies the least with the guidelines for the quality of drinking water.

Groundwater Supply Investigation for the Uis Tin Project, Namibia

AFT7220

Constituents	Gi	uidelines Consu	For Hum	an	BH3	BH3	BH3	BH3	BH3	BH4	BH4	BH4	BH4	BH4	BH6	BH6	BH6	BH6	BH6
Constituents	Group A	Group B	Group C	Group D	06/01/2022 19:50	07/01/2022 18:00	09/01/2022 18:00	10/01/2022 18:00	11/01/2022 12:00	11/01/2022 17:00	12/01/2022 05:00	12/01/2022 17:00	13/01/2022 05:10	13/01/2022 17:00	15/01/2022 13:00	16/01/2022 00:40	16/01/2022 14:00	21/01/2022 06:00	21/01/2022 18:00
рН	6-9	5.5- 9.5	4-11	<4- >11	7	7	7	7	6.92	6.9	6.9	7	7	7	6.9	7	7	6.9	6.9
Electrical Conductivity mS/m	150	300	400	>400	899	888	884	881	883	793	798	798	803	805	1,152	1,141	1,178	1,167	1,147
Total Dissolved Solids ⁹	-	-	-	-	5,505	5,416	5,434	5,447	5,408	4,651	4,719	4,843	4,917	5,074	7,211	7,048	7,106	7,387	7,132
Turbidity	1	5	10	>10	0.35	0.3	0.3	0.55	0.4	0.2	0.25	0.25	0.75	0.3	0.35	0.2	0.6	0.35	0.2
Calcium as Ca	150	200	400	>400	459	467	465	463	459	440	462	455	457	462	492	485	490	517	493
Magnesium as Mg	70	100	200	>200	291	294	294	294	295	262	272	270	273	280	377	369	386	383	378
Sodium as Na	100	400	800	>800	1,160	1,159	1,149	1,154	1,147	994	1,002	976	993	1,030	1,526	1,466	1,465	1,503	1,482
Potassium as K	200	400	800	>800	55	53	54	53	55	46	47	47	48	48	84	81	84	82	81
Total Alkalinity as CaCO ₃	-	-	-	-	410	400	400	400	395	400	380	385	385	380	410	410	405	405	405
Chloride as Cl	250	600	1200	>1200	2,166	2,120	2,143	2,166	2,143	1,659	1,728	1,866	1,889	1,774	2,857	2,834	2,857	2,949	2,857
Sulphate as SO ₄	200	600	1200	>1200	1,101	1,057	1,062	1,052	1,046	959	953	948	986	1,215	1,593	1,517	1,552	1,688	1,579
Nitrate as N	10	20	40	>40	5.8	5.6	5.8	5.4	5.6	12	6	11	8.8	8.1	7.8	11	6.3	4.6	4
Nitrite as N	-	-	-	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fluoride as F	1.5	2	3	>3	1	0.9	0.9	0.9	0.9	0.9	0.8	0.8	0.8	0.9	1.4	1.4	1.4	1.3	1.3
Iron as Fe	0.1	1	2	>2	0.01	0.02	0.03	0.03	0.02	0.05	0.02	0.01	0.02	0.03	0.04	0.04	0.05	0.04	<0.02
Manganese as Mn	0.05	1	2	>2	<0.01	<0.01	0.01	0.01	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.02	<0.02	<0.02	<0.02	<0.02
Ammonia as N	1	2	4	>4	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Total Hardness as CaCO ₃	300	650	1300	>1300	2,344	2,377	2,372	2,367	2,361	2,178	2,274	2,248	2,265	2,307	2,781	2,731	2,813	2,868	2,788
Ca-Hardness as CaCO₃	375	500	1000	>1000	1,146	1,166	1,161	1,156	1,146	1,099	1,154	1,136	1,141	1,154	1,229	1,211	1,224	1,291	1,231
Mg-Hardness as CaCO ₃	290	420	840	>840	1,198	1,211	1,211	1,211	1,215	1,079	1,120	1,112	1,124	1,153	1,552	1,520	1,590	1,577	1,557
Overall Quality Group ¹⁰	-	-	-	-	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D

 ⁸ All constituents are in mg/l unless otherwise stated.
⁹ Calculated value
¹⁰ The overall quality group into which a water is classified, is determined by the determinant that complies the least with the guidelines for the quality of drinking water.

Groundwater Supply Investigation for the Uis Tin Project, Namibia

AFT7220

Constituents ¹¹	Guidelines For Human Consumption				BH8	BH8	BH8	BH8	BH8	BH9	BH9	BH9	BH9	BH9	BH11	BH11	BH11	BH11	BH11
	Group A	Group B	Group C	Group D	22/01/2022 22:00	23/01/2022 09:40	23/01/2022 21:00	24/01/2022 09:00	24/01/2022 21:00	07/01/2022 20:00	07/01/2022 08:00	08/01/2022 20:00	09/01/2022 08:00	09/01/2022 21:00	16/01/2022 15:00	17/01/2022 02:40	17/01/2022 14:20	18/01/2022 03:40	18/01/2022 15:00
рН	6-9	5.5- 9.5	4-11	<4- >11	7.3	7	6.9	7	7	7.3	7.3	7.7	7.2	7.2	6.9	6.9	6.9	6.9	7
Electrical Conductivity mS/m	150	300	400	>400	1,107	921	885	884	898	433	428	437	453	474	2,190	2,010	1,961	1,938	1,910
Total Dissolved Solids ¹²	-	-	-	-	6,924	5,790	5,537	5,143	5,193	2,490	2,556	2,583	2,605	2,864	14,809	13,410	12,764	12,799	12,371
Turbidity	1	5	10	>10	5.8	0.15	0.2	0.2	0.2	0.7	0.25	0.25	0.3	0.35	0.35	0.3	0.25	0.2	0.2
Calcium as Ca	150	200	400	>400	613	484	469	478	479	156	162	146	178	189	1,126	1,120	1,120	1,087	1,113
Magnesium as Mg	70	100	200	>200	276	220	214	212	218	90	90	93	100	106	554	535	543	535	536
Sodium as Na	100	400	800	>800	1,439	1163	1139	1,127	1,162	677	650	665	662	689	3,448	2,891	2,787	2,723	2,639
Potassium as K	200	400	800	>800	56	50	48	48	49	29	28	29	30	31	110	95	94	91	90
Total Alkalinity as CaCO ₃	-	-	-	-	200	195	185	185	190	395	395	365	395	385	230	235	235	240	235
Chloride as Cl	250	600	1200	>1200	2,650	2,097	1,982	1,982	1,982	737	830	853	853	876	5,991	5,530	5,185	5,300	4,954
Sulphate as SO ₄	200	600	1200	>1200	1,444	1,210	1,133	1,139	1,144	509	504	523	485	678	3,131	2,785	2,656	2,670	2,656
Nitrate as N	10	20	40	>40	73	101	99	10	9.8	12	12	12	13	14	70	70	53	56	54
Nitrite as N	-	-	-	-	0.6	0.86	0.9	1	1.1	0.01	0.01	0.01	0.01	0.02	<0.01	0.01	<0.01	<0.01	<0.01
Fluoride as F	1.5	2	3	>3	1.2	1.3	1.3	1.3	1.3	2	2.1	2	2.1	2	1.3	1.2	1.2	1.2	1.2
Iron as Fe	0.1	1	2	>2	1.8	0.05	0.02	0.02	0.01	0.04	0.01	0.02	0.01	0.02	0.18	0.19	0.49	0.97	0.16
Manganese as Mn	0.05	1	2	>2	<0.02	0.01	<0.01	<0.01	0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.1	<0.1	<0.1	0.24	<0.1
Ammonia as N	1	2	4	>4	1.1	1.4	2.2	2.1	2.2	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Total Hardness as CaCO₃	300	650	1300	>1300	2,667	2,115	2,052	2,067	2,094	760	775	748	856	908	5,093	5,000	5,033	4,917	4,986
Ca-Hardness as CaCO₃	375	500	1000	>1000	1,531	1,209	1,171	1,194	1,196	390	405	365	444	472	2,812	2,797	2,797	2,714	2,779
Mg-Hardness as CaCO ₃	290	420	840	>840	1,137	906	881	873	898	371	371	383	412	437	2,281	2,203	2,236	2,203	2,207
Overall Quality Group ¹³	-	-	-	-	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D

 ¹¹ All constituents are in mg/l unless otherwise stated.
¹² Calculated value
¹³ The overall quality group into which a water is classified, is determined by the determinant that complies the least with the guidelines for the quality of drinking water.

Constituonts ¹⁴	Gi	uidelines Consu	For Hum mption	an	BH12	BH12	BH12	BH12 BH12		K5 Pit
Constituents	Group A	Group B	Group C	Group D	11/01/2022 09:00	11/01/2022 21:40	12/01/2022 09:20	12/01/2022 21:00	13/01/2022 09:00	25/01/2022
рН	6-9	5.5- 9.5	4-11	<4- >11	7.1	7.1	7.2	7.2	7.2	7.5
Electrical Conductivity mS/m	150	300	400	>400	838	812	802	3,260	785	3270
Total Dissolved Solids ¹⁵	-	-	-	-	5,262	5,022	5,075	22,768	4,826	22,763
Turbidity	1	5	10	>10	0.25	0.3	0.3	3	0.6	4.8
Calcium as Ca	150	200	400	>400	473	450	451	986	420	979
Magnesium as Mg	70	100	200	>200	229	216	215	1004	201	1023
Sodium as Na	100	400	800	>800	1,121	1,069	1,081	5,596 1,000		5,505
Potassium as K	200	400	800	>800	52	51	51	232	50	236
Total Alkalinity as CaCO ₃	-	-	-	-	385	285	345	190	345	133
Chloride as Cl	250	600	1200	>1200	1,843	1,751	1,751	9,332	1,728	9,102
Sulphate as SO ₄	200	600	1200	>1200	1,035	1,052	1,062	5,449	1,002	5,830
Nitrate as N	10	20	40	>40	62	59	58	12	49	1.4
Nitrite as N	-	-	-	-	0.07	0.04	0.05	0.13	0.06	0.22
Fluoride as F	1.5	2	3	>3	1.4	1.4	1.4	2.1	1.4	1.9
Iron as Fe	0.1	1	2	>2	0.02	0.03	0.02	<0.1	0.02	0.18
Manganese as Mn	0.05	1	2	>2	<0.01	<0.01	<0.01	<0.1	<0.01	0.21
Ammonia as N	1	2	4	>4	<0.02	<0.02	0.49	0.44	<0.02	1.2
Total Hardness as CaCO ₃	300	650	1300	>1300	2,124	2,013	2,012	6,597	1,876	6,657
Ca-Hardness as CaCO ₃	375	500	1000	>1000	1,181	1,124	1,126	2,462	1,049	2,445
Mg-Hardness as CaCO ₃	290	420	840	>840	943	889	885	4,134	828	4,213
Overall Quality Group ¹⁶	-	-	-	-	D	D	D	D	D	D

 ¹⁴ All constituents are in mg/l unless otherwise stated.
¹⁵ Calculated value
¹⁶ The overall quality group into which a water is classified, is determined by the determinant that complies the least with the guidelines for the quality of drinking water.

Groundwater Supply Investigation for the Uis Tin Project, Namibia

AFT7220

Figure 3-14: Electrical Conductivity Trends
Hydrogeological Assessment

Groundwater Supply Investigation for the Uis Tin Project, Namibia

AFT7220

Figure 3-15: Chloride and Sulphate Trends

Hydrogeological Assessment

Groundwater Supply Investigation for the Uis Tin Project, Namibia

AFT7220

Figure 3-16: Magnesium and Sodium Trends

	BH1	BH2	BH10	BH3	BH4	BH6	BH8	BH9	BH11	BH12	K5 Pit
Langelier Index	0.78	0.58	0.62	0.68	0.66	0.64	0.46	0.60	0.72	0.76	1.00
	Scale-forming tendency										
Ryznar	5.70	5.74	5.78	5.62	5.72	5.64	6.16	6.14	5.48	5.60	5.50
Index	Scale-forming tendency										
	3.72	7.52	7.08	10.32	9.26	14.02	22.36	4.48	44.76	28.36	142.3
Corrosivity Ratio	Tendency towards progressive corrosion										

Table 3-4: Corrosion/Scaling Indices

3.4.3. Aquifer Testing

Hammerstein Mining and Drilling tested the water supply boreholes between 5 December 2021 and 25 January 2022. The duration of the aquifer tests was planned for 48 hours for each borehole. A summary of these aquifer tests is provided in Table 3-5. The methodology is provided in Appendix A and the test data, observation comments and Aqtesolv interpretations are provided in Appendix C.

The aquifer test data was interpreted using the FC method and Aqtesolv (Version 4.5 professional). The FC method was used to determine the sustainable yield (Table 3-8) for the boreholes whilst Aqtesolv was used to interpret the hydraulic parameters for the aquifer (Table 3-6). The solutions used in the Aqtesolv software include the Cooper-Jacob, Theis and Theis Recovery for confined aquifers as well as the Moench solution for fractured aquifers.

Although the applied methodology for calculating hydraulic parameters is based on assumptions which may differ from actual site conditions (e.g., infinite areal extent, homogenous and isotropic aquifer conditions, no delayed gravity response of aquifer), the resulting hydraulic parameter from these calculations are representative of the aquifer system in the vicinity of the tested boreholes.

The hydraulic conductivities calculated from the Moench solution indicate a range between 0.1 - 3.5 m/d with an average of 0.8 m/d, a harmonic (harmean) mean of 0.2 m/d and a geometric (geomean) mean of 0.3 m/d. The transmissivities calculated from the Cooper-Jacob and Theis solutions indicate a range between 0.6 - 586 m²/d with an average of 51 m²/d, a harmean of 6 m²/d and a geomean of 18 m²/d. The previous aquifer test data was interpreted with Aqtesolv, and a similar range of hydraulic conductivities and transmissivities were obtained (Table 3-7).

The hydraulic conductivities calculated from the water supply boreholes correspond to what is expected for fractured igneous and metamorphic rocks which can range between $1x10^{-3} - 1x10^{-1}$ m/d (Domenico & Schwartz, 1990). The results also correspond with the hydraulic conductivities for a study undertaken for the Swakop River Catchment (within the Damara Orogen) which indicates that the hydraulic conductivities can range between $8.6x10^{-4} - 0.86$ m/d in fractured aquifers with a moderate groundwater potential and between $8.6x10^{-4} - 8.6$ m/d in fractured aquifers with a high groundwater potential (Winker, 2010).

The combined average sustainable yield for all the aquifer tested boreholes is $18.7 \text{ m}^3/\text{hr}$ (Table 3-8)¹⁷.

During the aquifer test on BH9 it was observed that the installed pump had iron oxide deposits and that roots were growing within the borehole. An initial recommendation would be to clean borehole BH9 to assess if yields can be improved.

 Roots could be removed by welding steel blades onto a heavy rod. Sharper blades should be positioned on the lower portion to assist with cutting roots when the rod is

¹⁷ The average sustainable yield provides an intermediate estimation between the 1 and 2 no flow boundaries which is likely to be present on site. A no flow boundary is an impermeable unit that does not allow flow through it (i.e., dyke, sealed fault)

being lowered and blunter blades can be positioned higher up to assist with grabbing the loose roots when pulling the rod out of the borehole. An auger-type fitting may also be an option. The borehole will need to be cleaned regularly to prevent the roots regrowing;

- Complete a downhole camera survey to assess if the fractures are blocked which may need to be flushed, brushed or redrilled to a slightly larger diameter to try clear surface deposits on the borehole walls which may be blocking yields;
- Chemical additives could be used provided this doesn't interfere with the water chemistry needed in the plant or surrounding water supply boreholes; and
- Alternative boreholes may need to be drilled or located to supplement water supply during borehole maintenance periods.

It is also recommended to clean BH2. The 2021 aquifer test on BH2 was done at a reduced rate of $2m^3/hr$ (compared to the previous $6 m^3/hr$) and resulted in a higher drawdown compared to the original test (15 m compared to the previous 5 m). This may indicate that scaling could be affecting the operation of the borehole.

Borehole	Test	Test Duration (hours)	Test Rate (m³/hr)	Test Rate (I/s)	Pump Depth (mbgl)	Borehole Depth (m)	SWL (mbgl)	Drawdown (m)	Observation Boreholes	Lithology	Main Water Strike Depth (m)	Co
PU1	CDT 1	16	8	2.2	44	48	24.20	18.79		Quartzite	27	Yield was not sustainable. Casing has bee
DITI	CDT 2	24	5	1.4	44	48	25.13	2.48	DH2, DH10	Quartzite	27	Casing has been installed.
BH2	CDT 1	48	2	0.6	50	54	29.95	15.16	BH1, BH10	Quartzite	31	No casing installed.
DU3	CDT 1	5	3	0.8	56	60	17.10	35.21		Quartzite, Schist	27	Yield was not sustainable. No casing instal
БПЭ	CDT 2	52	2	0.6	56	60	16.80	8.12		Quartzite, Schist	27	Rate was initially set to 4 m ³ /hr (pressure is
BH4	CDT1	48	4.5	1.3	86	90	21.89	12.62	BH3, BH6	Pegmatite, Quartz, Schist	48	No casing installed.
BH5						·		•		Collapsed at 15.45 mb	ogl	
	CDT 1	11	15	4.2	70	90	17.41	49.83		Unknown	Unknown	Accidentally started at 18 m ³ /hr reduced to
BH6	CDT 2	8	11	3.1	70	90	20.65	26.02	BH3, BH4	Unknown	Unknown	Yield was not sustainable
	CDT 5	28	6	1.7	70	90	19.32	8.18		Unknown	Unknown	
BH8	CDT1	48	18.5	5.1	70	118	37.00	5.14	BH11	Schist, Pegmatite	50, 85, 106, 111	Casing has been installed.
BH9	CDT1	48	7.5	2.1	96	100	34.46	38.78	BH10, BH12	Schist, Quartz	46, 70	No casing installed.
DU10	CDT 1	8	12	3.3	54	58	33.56	1.48		Quartzite	28, 32, 40	Pumped at a lower rate to verify yield and
БПІО	CDT 2	40	18	5.0	54	58	34.14	3.32		Quartzite	28, 32, 40	Casing has been installed.
BH11	CDT1	48	9.6	2.7	74	78	41.25	14.60	BH8	Unknown	Unknown	
BH12	CDT1	48	2.5	0.7	54	58	31.90	7.60	BH9	Unknown	Unknown	Rate was increased to 3 m3/hr after 24 hor

Table 3-5: Aquifer Test Summary

mment
n installed.
lled.
ssues in the pipes). No casing installed
15 m³/hr. Yield was not sustainable
fill plant reservoir. Casing has been installed.
urs

		Literature	Swakop River Catchment Study	Fracture	ed Aquifer	Cooper Jacob (Early)	Cooper Jacob (Late)	Theis Recovery (Early)	Theis Recovery (Late)	Theis (Early)	Theis (Late)	Theis (Recovery)	
		k (m/d)	k (m/d)	k (m/d)	Ss (m-1)		T (m²/d)						
	2021 CDT1			1.8	2.3x10 ⁻²	36.8	0.8	2.1	30.4	39).7	28.1	
BIII	2021 CDT2			1.9	1.1x10 ⁻²	42	28.4	43.7	21.2	31	.9	29.8	
BH2	2021 CDT1			0.2	5.7x10 ⁻²	9.1	3.3	0.5	14.7	-	-	4.9	
вна	2022 CDT1			0.1	1.9x10 ⁻⁴	0.6	3.4	2.6	1.4	3	.3	-	
BHS	2022 CDT2			0.1	1.1x10 ⁻⁴	4.9	1.8	4.2	2	-	-	3.9	
BH4	2022 CDT1			0.2	2.8x10 ⁻⁵	5.2	13.4	1.8	63.3	-	-	11.1	
	2022 CDT1			0.1	7.4x10 ⁻²⁰	38	37.5	32.8	-	36.87	37.9	-	
BH6	2022 CDT2			0.1	1.5x10 ⁻⁵	82.1	6.4	54.8	14	85.1	9	7.9	
	2022 CDT3			0.1	1.4x10 ⁻³	84.5	3.8	92.6	8.1	99	4.2	3.7	
BH8	2022 CDT1			0.5	3.4x10 ⁻⁴	257.8	25.4	586	176.5	257.8	25.9	27.2	
BH9	2022 CDT1			0.1	1.8x10 ⁻⁶	8.5	1	1.2	9.4	3	.7	4.4	
PH10	2021 CDT1			3.5	0.1	154	84.3	215.5	195.9	183.4	73.3	81.6	
БПІО	2021 CDT2			3.2	0.2	182.2	39.1	162.2	80.8	163	35.9	57.7	
BH11	2022 CDT1			0.2	5.1x10 ⁻²	32.8	4.3	16.6	7.7	34.1	4.5	-	
BH12	2022 CDT1			0.4	2.1x10 ⁻⁴	20.7	2.3	3.8	12.6			12.29	
Minimum 0.001 8.6x10 ⁻⁴ 0.1 7.4x10 ⁻²⁰					7.4x10 ⁻²⁰				0.6				
	Maximum	10	8.6	3.5	0.2	586							
	Average	-	-	0.8	0.03	3 50.8							
	Harmonic Mean	-	-	0.2	1.1x10 ⁻¹⁸	-18 5.9							
	Geometric Mean	-	-	0.3	1.0x10 ⁻⁴	17.6							

Table 3-6: Summary of Hydraulic Parameters

	2018 Test	2018	2018	Fracture	d Aquifer	Cooper Jacob (Early)	Cooper Jacob (Late)	Theis Recovery (Early)	Theis Recovery (Late)	Theis (Early)	Theis (Late)	Theis (Recovery)
	Rate (m ³ /hr)	SWL (mbgl)	Drawdown (m)	k (m/d)	Ss (m-1)		T (m²/d)					
BH1	5	21.05	1.69	1.7	5.3x10 ⁻⁵	90.5	47	72.2	43.6	-	-	51.7
BH2	6	23.24	5.06	0.9	6.6x10 ⁻⁶	34.4	22.7	42.1	23.5	-	-	27.1
BH3	2	14.75	4.6	0.1	3.4x10 ⁻⁴	6.7	-	8.2	-	-	-	7.4
BH4	3	15.11	8.14	0.1	9.9x10 ⁻⁷	3	55.6	2	90.5	-	-	55.6
BH5	2.5	14.92	31.75	0.05	1.8x10 ⁻²	4.8	2.3	-	1.8		2	-
BH6	6	16.6	1.83	0.2	1.4x10 ⁻⁴	94.1	25.5	107.1	43.5	109.8	19.7	-
BH8	17.5	36.93	2.16	1.2	8.2x10 ⁻⁷	855.2	79.3	957.9	122.5	747.2	73.4	-
BH9	6	30.07	7.86	0.3	2.8x10 ⁻⁷	13.2	18.4	33.4	36.4	-	-	21.2
BH10	19	23.03	19.7	2.3	0.2	298.2	112.1	239.8	114.3	-	-	109.6
	Mir	nimum		0.05	2.8x10 ⁻⁷				2			
	Ma	ximum		2.3	0.2	958						
	Av	verage		0.8	0.02	112						
	Harmo	onic Mean		0.2	1.5x10⁻ ⁶	12						
	Geome	etric Mean		0.4	6.2x10 ⁻⁵	38						

Table 3-7: Summary of Previous Aquifer Test Parameters

Groundwater Supply Investigation for the Uis Tin Project, Namibia

AFT7220

Table 3-8: Sustainable Yield Interpretations

		Sı	istainable Yield (m ³ /hr)		
Borehole	No Boundaries ¹⁸	1 No Flow Boundary	2 No Flow Boundaries	4 No Flow Boundaries	Average
BH1	0.9	0.5	0.4	0.2	0.4
BH2	0.4	0.3	0.2	0.1	0.2
BH3	0.6	0.4	0.3	0.1	0.3
BH4	2.1	1.3	0.9	0.5	1.0
BH6	2.2	1.2	0.8	0.4	1.0
BH8	16.6	10.2	7.4	4.1	8.5
BH9	1.9	1.1	0.8	0.4	0.9
BH10	7.6	4.9	3.6	2.0	4.0
BH11	3.0	1.7	1.2	0.6	1.4
BH12	1.9	1.2	0.9	0.5	1.0
Total Yield	37.2	22.7	16.4	9.0	18.7

¹⁸ A no flow boundary is an impermeable unit that does not allow flow through it (i.e., dyke, sealed fault).

4. Conceptual Model

The conceptual model describes the hydrogeological environment and is used as input into the numerical model to represent simplified, but relevant conditions of the groundwater system. The conceptual model is based on the source-pathway-receptor principle.

4.1. Sources

4.1.1. Recharge

The NA-MIS (Namibian Monitoring Information System) and hydrogeological map of Namibia indicates the project area has an effective groundwater recharge percentage of 0% of the average annual recharge. Surrounding areas associated with the mica schists of the Kuiseb Formation and the marbles of the Karibib Formation can receive up to a maximum of 0.5% of the average annual recharge (Groundwater Management Institute, 2022). With an average annual rainfall of 88 mm, the recharge to isolated areas of the project area could be a maximum of 0.44 mm/a.

A rainwater sample was collected on 19 January 2022 and submitted to a SANAS accredited laboratory for chloride analysis. Chloride can be used as a tracer to estimate the recharge to the groundwater aquifers using the following equation:

$$R = P.\frac{Clp}{Clgw}$$

Where R is the groundwater recharge flux, P is the average annual precipitation, CI_p is the average chloride concentration for precipitation and CI_{gw} is the average chloride concentration for groundwater.

The results of the chloride method estimate indicate approximately 0.7% (0.61 mm/a) of rainfall contributes to recharging the groundwater aquifer in the project area. This would indicate a maximum contribution percentage as the equation above does not account for surface water runoff or the presence of chloride in the environment (i.e., gypsum) which may influence the chloride concentration recharging to or occurring within the aquifer.

4.2. Pathways

4.2.1. Aquifers

The project area comprises of igneous (local pegmatites and regional granites) and metamorphic (schist and quartzite) rocks with alluvial sediment cover in the Uis river channel. Two aquifers have been interpreted based on the available information.

4.2.1.1. <u>Alluvial Aquifer</u>

An alluvial aquifer occurs predominantly within river channels but can also be present as a surface cover overlaying the fractured aquifer (Figure 3-4).

Observations on site indicate that the alluvial sediments are coarse-grained. Coarse-grained unconsolidated sediments can have a range in hydraulic conductivity of between 0.08 - 518 m/d (Domenico & Schwartz, 1990). The drill logs of the water supply boreholes indicate that the alluvial sediments in the Uis and Southern wellfield river channels vary between 2 - 13 m thick, with an average thickness of 5.5 m. The static water levels measured in the water supply boreholes occur below the alluvial aquifer indicating this aquifer will be important for recharging the underlying fractured aquifer but is of low importance for water supply.

4.2.1.2. Fractured Aquifer

Majority of the project area is exposed as schists (meta-pelites), marble or granites (Figure 3-4). Intrusive and metamorphic rocks typically have poor aquifer properties but can yield successful boreholes if secondary fracture or fault features are intersected. Marble aquifers can have a higher groundwater potential if karstic features have developed, however yields may still be dependent on the degree of weathering and availability of rainfall for recharge.

The NA-MIS (Namibian Monitoring Information System) and hydrogeological map of Namibia indicates that the geology of the project area has a very low and limited groundwater potential. The schists (Kuiseb Formation) and the marbles (Karibib Formation) are considered to have a low potential for groundwater, but localised areas can have a higher moderate potential for groundwater. The NA-MIS hydrogeological map indicates that the project area occurs in the region with the lowest abstraction volume (Groundwater Management Institute, 2022).

The hydraulic conductivity of igneous and metamorphic rocks can range between $1x10^{-3} - 1x10^{1}$ m/d for fractured rocks and between $3x10^{-9} - 2x10^{-5}$ m/d in unfractured rocks (Domenico & Schwartz, 1990). The aquifer testing results indicates that the fractured aquifer in the project area occurs within the expected range of hydraulic conductivities (ranging between 0.01 - 7 m/d with an average of 0.9 m/d).

The weathering profiles for the water supply boreholes indicate that the fractured aquifer is weathered to an average depth of 25 m and has a higher frequency of fractures between 20 - 50 m. Although the fracture frequency decreases after 50 m the fractures that are intersected can still be high yielding. Initial groundwater levels measured in 2018 indicate that the water table typically occurs within the weathered zone of the fractured aquifer. Abstraction from the Uis wellfield boreholes since operations began in 2020 has drawn down the water levels in these boreholes by between 2.4 - 7.8 m. Groundwater levels within the Southern wellfield have decreased by an average of 1.4 m between 2018 and 2022, even though these boreholes are not operational.

4.3. Receptors

AfriTin have two wellfields from which water can be drawn to supply the processing plant. The Uis wellfield is located in the Uis river, which runs through the mine area. There are seven boreholes located in this wellfield which are currently being used to supply water to the plant. The Uis wellfield boreholes are located within 2 km of each other and are expected to provide

a combined average sustainable yield of 16.4 m³/hr. Two third-party boreholes are located in Uis River catchment.

The Southern wellfield is located within a river channel approximately 6 km south of the mine and comprises of three boreholes. A fourth low yielding borehole was drilled in this wellfield but has subsequently collapsed. The Southern wellfield is not currently operational. The three boreholes in the southern wellfield are located within 700 m of each other and are expected to provide a combined average sustainable yield of 2.3 m³/hr.

5. Numerical Model

A finite difference numerical groundwater flow model was constructed based on the conceptual model for the Uis Tin Mine. The numerical model was calibrated and verified with the available monitoring data.

The numerical model was constructed using GMS 10.5.9, a pre- and post- processing package for MODFLOW and MT3DMS. MODFLOW is a three-dimensional groundwater flow model published by the United States Geological Survey (USGS). MODFLOW is a widely used simulation code which is well documented.

The numerical model was constructed to represent the hydrogeological units as described in Section 4 for the alluvial, weathered, highly fractured and low fractured aquifers. The model thickness was set at 250 m to accommodate the maximum depth of abstraction boreholes (maximum of 90 mbgl) but also to allow incorporation of the topography and extents and depths of geological units.

5.1. Model Confidence Level Classification

The level of confidence depends upon the available data for the conceptualisation, design and construction of the model. Consideration was given to the spatial and temporal coverage of the available datasets to characterise the aquifer and the historic groundwater behaviour that was useful for model calibration.

Factors that affect the model confidence level include the type and quality of data used for model calibration, the degree to which the model was able to reproduce observations, and whether the model was able to represent present-day hydrogeological conditions during the calibration procedure. For the calibration process, the following data was available for the project:

- Surface geology maps for the mining and wellfield areas;
- Geological logs and aquifer tests for 11 boreholes, in the alluvial aquifer and weathered and highly fractured parts of the underlying lithologies, mainly in meta-sedimentary rocks and pegmatite;
- Historic groundwater level data for 21 boreholes, mostly in the Uis Riverbed and at the southern wellfield, with most boreholes intersecting thin alluvial deposits on top of fractured rock; and

• Recharge estimations based on available information for the region.

Based on a semi-quantitative assessment of the available data on which the model was based on and the manner in which the model was calibrated, the model was classified as a Class 1 model using the Australian Guidelines (Australian Government - National Water Commission, 2012).

This model could be updated to a Class 2 model should the following data become available:

- Obtain additional hydraulic parameters such as transmissivity and hydraulic conductivity of rock units present in the area surrounding the mine site, including to the north, east and south of the mine site;
- Periodical, long-term groundwater water level monitoring in the surrounding area of the mine;
- Increased accuracy of recharge estimates; and
- Flow measurements in the Uis River.

5.2. Model Setup

The conceptual model was translated into the numerical model during the model setup. This involves:

- Defining the model domain and boundary conditions;
- Discretising the data spatially and over time;
- Defining the initial conditions;
- Selecting the aquifer types; and
- Preparing the model input data.

5.2.1.1. <u>Model Domain</u>

The model domain is irregularly shaped with approximate dimensions of 33 km west-east by 25 km north-south, which is a relatively large model area due to the size of the catchment. The model grid was discretised by 974×708 cells in the x and y direction for 8 model layers, resulting in a total of 5 146 616 active cells. A grid refinement of 10 m x 10 m cells covering the area including the wellfields was applied with gradually coarser grid cell sizes to a maximum size of 300 m x 300 m away from the abstraction boreholes to reduce model run time (Figure 5-1).

5.2.1.2. <u>Time Discretisation</u>

Time parameters are relevant when modelling transient (time-dependent) conditions. They include time units, the length and number of stress periods and the number of time steps within each stress period. All model parameters associated with boundary conditions and various stresses remain constant during one stress period.

For the purpose of simulation of borehole abstraction, transient simulations was discretized into stress periods as follows:

• For the production borehole abstraction: monthly stress periods with average abstractions and drawdowns.

Stress periods were subdivided in timesteps to allow for accurate iterations as follows:

- Yearly stress periods divided in 10-time steps; and
- Monthly stress periods divided in 10-time steps.

5.2.1.3. Boundary Conditions

Boundary conditions are sets of differential equations that must be solved to express the known water fluxes and variables (such as hydraulic heads) within the model domain. Local hydraulic boundaries were identified for the model boundary, which are represented by local water courses and topographical highs. These hydraulic boundaries as shown in Figure 5-1 and detailed in Table 5-1 were selected far enough from the proposed mining activities so that the boundaries don't influence the numerical model artificially.

Boundary	Boundary Description	Boundary Condition
Тор	Top surface of water table	Mixed type: Drain cells for non-perennial streams. Different recharge rates were assigned for different recharge areas (based on topography and available information) and hydrogeological units. Recharge flux was applied to the highest active cell.
North	Topographical / non-perennial stream	Drain and constant head boundaries
East	Geological contact / topographical	Constant head boundary
South	Topographical / non-perennial stream	Drain and constant head boundaries
West	Non-perennial streams	Drain boundary

Table 5-1: Identification of Real-World Boundaries and Adopted Model Boundary Conditions

As input into the numerical model, the following assumptions were made for the Uis Tin Mine:

- Available groundwater levels for historical and current boreholes were used for steady state calibration;
- For transient calibration, the following was used:
 - Drawdown and abstraction data for the current production boreholes (period September 2020 – March 2022).

The most up-to-date abstraction data, as received from Uis Tin Mine, was used as input for the numerical model. The extent and depth of hydrostratigraphic units were determined based on a combination of the available regional and local surface geology and borehole lithological logs and is shown in Figure 5-2 to Figure 5-3.

5.2.1.4. Input Parameters

Model input parameters for this groundwater flow model are divided into two groups:

- hydrogeological parameters; and
- initial conditions.

Initial estimates for hydraulic properties were assigned based on pump test results as carried out as part of the fieldwork. Initial head conditions were estimated based on measured groundwater levels. Recharge rates were applied to different hydrogeological units and recharge areas within the model area as a percentage of MAP. These rates were based on topography (there is an elevated area along the eastern boundary of the model for which available data indicated a recharge rate of >0.5% of MAP) and recharge rates for the different lithological units for the remainder of the model. The highest recharge was used as input for the elevated area (high recharge area), followed by the sediments, due to them receiving higher infiltration rates when compared to areas underlain by weathered rocks. For the steady-state and transient models an annual recharge rate was used (Table 5-2).

Hydrogeological unit	Percentage of MAP	Recharge rate (m/d)
Sediments	0.4%	1.1 x 10 ⁻⁶
Meta-sedimentary rocks	0.1%	2.7 x 10 ⁻⁷
Granite	0.08%	2.1 x 10 ⁻⁷
Schist	0.08%	2.1 x 10 ⁻⁷
Higher recharge area	1%	2.7 x 10 ⁻⁶

Table 5-2: Annual Recharge Values for Hydrogeological Units

Figure 5-1: Numerical Model Domain, Grid and Boundaries

Figure 5-2: Oblique Model View

Figure 5-3: Model Cross-Sections

5.2.1.5. Steady State Simulation

Calibration is the process of finding a set of boundary conditions, stresses and hydrogeological parameters that produce results that most closely match field measurements of hydraulic heads and flows. In a regional groundwater flow model, a difference between calculated and measured heads of up to several meters can be tolerated and is usually expressed as a function of the total range of observations.

The calibration was undertaken for steady state conditions as the hydrogeological system is at current not impacted by mining activities. Based on available information, groundwater levels measured in 17 boreholes in total were used for model calibration.

The numerical model calculated head distribution $(h_{x,y,z})$ is dependent upon the recharge, hydraulic conductivity and boundary conditions. For a certain timestep and a given set of boundary conditions, the simulated head distribution across the aquifer can be obtained for a given set of hydraulic conductivity values and specified recharge values. This simulated head distribution can then be compared to the measured head distribution and the hydraulic conductivity and/ or recharge values can be altered until an acceptable correspondence between measured and simulated heads is obtained.

Steady-state calibration of the Uis Tin Mine model area was accomplished by refining the vertical and horizontal hydraulic conductivity until a reasonable resemblance between the measured and simulated piezometric levels was obtained. This was done by a combination of PEST and manual calibration using aquifer zone properties for all model layers.

The steady-state calibration was regarded as sufficient at ME= -2.37 m, MAE =5.51 m and RMSE = 6.5 m. The graph in Figure 5-4 shows the relation between measured and simulated head at the end of steady state calibration process. The calibration results show a 91 % correlation between measured and observed values which is deemed acceptable.

A water balance error (all flows into the model minus all flows out of the model) of less than 0.5% is regarded as an accurate balance calculation. The mass balance for the entire model domain for the steady state stress period achieved a water balance error of 0.03% (Table 5-3).

Description	Flow In (m ³ /day)	Flow Out (m ³ /day)	
Recharge	498.9	-	
Drains	-	4476.4	
Head dependant bounds	6046.9	2071.1	
TOTAL FLOW	6545.8	6547.1	
Summary	In - Out	% difference	
Total	-1.65	0.03	

Table 5-3: Mass Balance: Steady State Model

5.2.1.6. Aquifer Hydraulic Conductivity

The calibrated hydraulic conductivities used in the steady-state model are listed in Table 5-4. The calibrated values for each unit were based on results from local aquifer tests, descriptions of the different lithologies and regional knowledge of the hydrogeological setting. The hydraulic conductivity of the alluvial deposits was assumed to be uniform for the study area as based on borehole logs and field observations of a mixture of clayey and sandy sediments. A k_h/k_v factor of 1 was used for the alluvial deposits and 10 for the fractured rock lithologies.

Table 5-4: steady State Model Calibrated Hydraulic Conductivities

Lithological Unit	Layer(s)	k _h (m/d)	Unit T (m²/d)
Sediments	1-2	13.2	66
Meta-greywacke - weathered	1-4	1.2	30
Granite - weathered	1-4	0.52	13
Schist - weathered	1-4	0.82	21
Pegmatite - weathered	1-4	6	150
Dyke - weathered	1-4	0.33	8.3
Fault/structure - weathered	1-4	1.2	30
Meta-greywacke - highly fractured	5-6	0.21	6.3
Granite - highly fractured	5-6	0.08	2.4
Schist - highly fractured	5-6	0.08	2.4
Pegmatite - highly fractured	5-6	0.4	12

Lithological Unit	Layer(s)	k _h (m/d)	Unit T (m²/d)
Dyke - highly fractured	5-6	0.024	0.7
Fault/structure - highly fractured	5-6	0.08	2.4
Meta-greywacke - low fractured	7-8	0.08	20
Granite - low fractured	7-8	0.08	20
Schist - low fractured	7-8	0.08	20
Pegmatite - low fractured	7-8	0.2	49
Dyke - low fractured	7-8	0.08	20
Fault/structure - low fractured	7-8	0.008	1.6

5.2.1.7. Other Model Parameters: Recharge

Based on background information and results from the calibration process, the following was derived:

- Recharge to the area is between 0.08 and 1% of MAP;
- Higher recharge was assigned for the elevated area and sedimentary deposits, ranging between 0.4 and 1% of MAP; and
- Lower recharge was assigned for the weathered lithologies for the remainder of the model, ranging between 0.08 and 0.1% of MAP.

5.3. Sensitivity Analysis

A sensitivity analysis was carried out on the calibrated model. The purpose of the sensitivity analysis was to quantify the uncertainty in the calibrated model caused by the uncertainty in the estimates of aquifer parameters. During the sensitivity analysis, horizontal conductivity and recharge were assessed. Parameters that model results are most sensitive to can be seen in Figure 5-5. Results of the sensitivity analysis indicate that the water levels in the model are mainly sensitive to changes in horizontal hydraulic conductivities of the highly fractured marble and pegmatite units, and to a lesser extent in highly fractured meta-greywacke, dyke and granite units and low fractured meta-greywacke, schist and marble units.

Based on these results, it is recommended that continuous groundwater monitoring should include the bedrock units in close proximity and surrounding the abstraction holes with focus on monitoring boreholes intersecting the units above. Continued time series groundwater level data from selected groundwater monitoring boreholes will most benefit future model updates

Figure 5-5: Model Parameter Relative Composite Sensitivity

5.4. Simulated Water Levels and Flow Direction

The simulated groundwater levels for the pre-abstraction situation are shown in Figure 5-6. The groundwater levels show the general east to west flow direction of groundwater from the elevated area underlain by marble units towards the outflow point of the Uis River. This aligns with the topographical gradient of the area and general drainage patterns. The lowest groundwater levels are located at the westernmost end of the model representing the river outflow.

Figure 5-6: Steady-State Groundwater Levels and Calibration Results

5.5. Model Outcomes

The numerical model was used to assess the drawdown impacts associated with abstracting the average sustainable yield (Table 3-8) for each of the water supply boreholes for the Phase 1 Stage II Life of Mine (LoM) of 18 years. The numerical model was calibrated using the transient abstraction data and the simulated drawdowns (within the water supply boreholes which are currently being monitored) are deemed to be representative of the current drawdowns measured. The simulated drawdowns are compared with the observed groundwater drawdowns in Figure 5-7 to Figure 5-11 and show a general fluctuation in drawdowns over time.

Figure 5-7: Simulated Drawdowns in BH1

Hydrogeological Assessment

Groundwater Supply Investigation for the Uis Tin Project, Namibia AFT7220

Figure 5-8: Simulated Drawdowns in BH2

Figure 5-9: Simulated Drawdowns in BH8

DIGBY WELLS ENVIRONMENTAL www.digbywells.com

Figure 5-10: Simulated Drawdowns in BH9

Figure 5-11: Simulated Drawdowns in BH10

DIGBY WELLS ENVIRONMENTAL www.digbywells.com

The abstraction for the Phase 1 Stage II requirements begins from the current groundwater levels (Figure 5-13) simulated for the Uis River Catchment which has already been impacted by abstractions for the Uis Tin Mine and by third-party groundwater users (Section 2). The cumulative drawdown for the Uis Tin Mine water supply boreholes and third-party groundwater users is shown in Figure 5-14, and represents a worst-case scenario with regards to the drawdown in the catchment.

The drawdown impacts associated with pumping the average sustainable yield from each of the water supply boreholes for a period of 18 years will extend to a maximum of ~6.5 km from the Uis Tin Mine and have a maximum regional drawdown of ~4.5 m in 2040 when compared to the current situation. The drawdown impacts will recover once abstraction activities cease, however based on the low recharge the impact may remain for an extended period of time (Table 5-5). The drawdown impacts have been assessed as minor using the impact assessment methodology defined in Appendix D.

5.5.1. Recharge Scenarios

The numerical model was run with different recharge inputs to determine the effect variable recharges to the simulated groundwater levels. The following recharge scenarios were modelled:

- Average monthly recharge rates;
- Average yearly recharge rates (Figure 5-12);

Simulating the monthly and annual recharge rates for the pre-abstraction period (1979 to 2019) showed a variation in simulated groundwater levels by between 0.15 - 5 m. Based on these results it is possible that the groundwater levels could fluctuate by 5 m as a result of changes in recharge over the proposed LoM which will need to be accounted for within the anticipated drawdowns associated with the abstraction boreholes.

Г

Table 5-5: Abstracting Groundwater for Water Supply

Dimension	Rating	Motivation	Significance				
Activity and In	teraction: A	bstracting groundwater for water supply purposes					
Impact Descri	Impact Description:						
Drawing dowr yields to third-	Drawing down the groundwater levels around the Uis River and Southern wellfields, reducing aquifer yields to third-party groundwater users.						
Prior to Mitiga	tion/Manage	ement					
Duration	6	The impact will remain for some time after the life of mine.					
Extent	4	The impact extends beyond the site.	Minor (negative) -				
Intensity	3	Moderate loss and/or effects to the physical resource.	51				
Probability	7	Definite					
Nature	Negative						
Mitigation/Mar	nagement A	ctions					
 Implement the LoM; Collect stands Manage Implement fouling, p Drill addiduring box Continue predicted Monitor a Monitor r Monitor t changes 	 Implement Actions Implement best practice and investigate new technologies to use water as efficiently as possible during the LoM; Collect stormwater runoff (when available and where possible); Manage abstraction from the boreholes with a water management plan; Implement regular borehole maintenance to improve the yields from the boreholes (reduce scaling, fouling, precipitation of oxides and presence of roots within the boreholes); Drill additional (or locate existing) water supply boreholes near the mine, to supplement water supply during borehole maintenance periods; Continue monitoring the groundwater levels on a weekly basis to monitor for any changes to the predicted drawdowns; Monitor abstraction rates and volumes from the water supply boreholes; Monitor rainfall events on site; and Monitor the water quality from the water supply boreholes on a quarterly basis to monitor for any changes in quality which may indicate if any changes are occurring in the aquifer.; 						
Post-Mitigatio	n						
Duration	6	The impact will remain for some time after the life of mine.	Minor (negative) - 48				
Extent	3	The impact extends beyond the site.					
Intensity	3	Moderate loss and/or effects to the physical resource.					
Probability	7	Definite					
Nature							

Figure 5-12: Pre-Abstraction Simulated Groundwater Levels and Annual Rainfall Inputs

Figure 5-13: Simulated Groundwater Levels (Current Conditions)

Hydrogeological Assessment Groundwater Supply Investigation for the Uis Tin Project, Namibia AFT7220

Figure 5-14: Simulated Drawdown Cones for 2025, 2030, 2035 and 2040

DIGBY WELLS ENVIRONMENTAL www.digbywells.com

6. Water Management Plan

The objective of the Water Management Plan is to ensure a consistent supply of water to the processing plant whilst not depleting the groundwater resource for other third-party groundwater users. The availability of water is dependent on a climate change, increasing demand, lowered water tables and environmental degradation and it is therefore important to manage the groundwater resource so that it may sustain long term use. The Phase 1 Stage II expansion will require ~354 m³/d (18 m³/hr for ~590 hours per month) for 18 years based on the reserve LoM, which equates to a total volume of 2 293 920 m³.

6.1. K5 Pit Water Use

AfriTin plan to continue mining from the K5 pit area in the future and would require that the pit be drained before mining commences but the timeline for this has not been confirmed. A bathymetric survey undertaken for the K5 pit indicates that the current volume of water within the pit is 190 634 m³ (Strydom & Associates, 2022). The current volume in the K5 pit can provide ~ 8% of the total volume required, which would be able to supply the processing plant for ~1.5 years.

By supplementing the water supply to the plant with the water stored in the K5 pit the demand from the water supply boreholes can be reduced allowing time to clean the current water supply boreholes. Abstractions from the pit however could potentially influence the yields of the boreholes located nearby to the K5 pit and this will need to be monitored once dewatering activities commence. It is recommended to plan the dewatering of the K5 pit as far as possible in advance so that the available water within the pit can be used by the plant instead of being discharged to the environment.

AfriTin could consider constructing an emergency water storage area near to the plant which is covered to minimise losses from evaporation. The capacity of the tanks within the storage area should be able to supply a week's water supply to the plant (~2 700 m³) that can be used in case of emergencies or to supplement the plant during borehole maintenance periods.

6.2. Water Supply Borehole Use

The current water supply boreholes have a combined 18.7 m³/hr average sustainable yield which can just sustain the Phase 1 Stage II expansion requirements, however the water supply from the boreholes will need to be monitored and managed to prevent depleting the groundwater resource or reducing the efficiency of the borehole as the boreholes will need to be operated for ~20 hours per day every day to meet the plant requirements. The proposed management plan for the water supply boreholes is provided in Table 6-1 and Figure 6-1.

Water Supply Borehole	Surface Elevation (mamsl)	Operational Times (hours per day)	Currently Used	Sustainable Yield Pump Rate (m ³ /hr)	Pump Rate (m³/d)	Pump Rate (m³/month)	Current Static / Dynamic GWL (mbgl) ¹⁹	Anticipated Dynamic GWL (mbgl) ²⁰	Monitoring Requirements	Operational and Maintenance Rec		
BH1	829	19.7	Yes	0.4	7.9	236	24.2	34.9929.2				
BH2	827	19.7	Yes	0.2	3.9	118	30.0	42.035.		4 hours per day have been allocated to allow water levels to recover in the water supply boreholes. This can be used as a buffer (if needed) to conduct maintenance	The efficiency o since 2018. This and retested to improved. This I cleaned on an a yields based on response. Monit	
											Consider casing risk of collapse.	
BH3	839	19.7	No	0.3	5.9	177	17.1	28.8822.1	 Monitor daily abstraction rates and 	reticulation system. Maintenance on the boreholes and/or pumps	Consider casing risk of collapse.	
BH4	838	19.7	No	1.0	19.7	590	21.9	35.2226.9	volumes;	should be scheduled if there is a drop in the borehole yield or the water levels begin to drop significantly compared with the established trend. Boreholes should be cleaned every 2 years unless the monitoring data indicates a higher frequency is required. The monitoring data collected must be used to recalibrate the numerical model once every two years to confirm the impact to the resource and allow early detection of any water supply issues.		
BH6	845	19.7	No	1.0	19.7	590	17.4	29.3322.4	 Monitor raman on site, Monitor groundwater levels in active 			
BH8	829	19.7	Yes	8.5	167.2	5015	37.0	49.9942.0				
BH9	825	19.7	No	0.9	17.7	531	34.5	49.7739.5	 abstraction boreholes on a weekly basis; Monitor groundwater levels in unused boreholes on a quarterly basis; and Monitor water quality on a quarterly basis. 		Clean this borel growing into it a blocking the bor pump. This borehole h existing pump a on an annual ba pump condition. confirm this.	
BH10	824	19.7	Yes	4.0	78.7	2360	33.6	44.8838.6				
BH11	829	19.7	No	1.4	27.5	826	41.3	53.9946.3	_		Case this boreh collapse.	
BH12	811	19.7	No	1.0	19.7	590	31.9	45.4436.9				
A	Estimate yield (6.5 m ³ /hr)									Locate and aquifer test these boreholes as an alterna		
В	Estimate yield (12.2 m ³ /hr)									supplement the plant during periods of m should the efficiency of the current boreh		
С	Estimate yield (5.0 m ³ /hr)											

Table 6-1: Water Supply Borehole Management Plan

ntenance Requirements ne efficiency of this borehole has declined nce 2018. This borehole must be cleaned nd retested to verify if the yield can be proved. This borehole may need to be eaned on an annual basis to maintain elds based on the observed aquifer test sponse. Monitoring results will confirm this. onsider casing this borehole to reduce the sk of collapse. onsider casing this borehole to reduce the sk of collapse. lean this boreholes of the roots currently owing into it and casing to prevent roots ocking the borehole and losing the installed ump. his borehole had oxide deposits on the kisting pump and may need to be cleaned an annual basis to maintain yields and the ump condition. Monitoring results will onfirm this. ase this borehole to reduce the risk of ollapse. as an alternative water supply borehole to maintenance on the existing boreholes or

¹⁹ Current groundwater level (GWL) is based on the static water level at the time of aquifer testing as a worst-case scenario.

²⁰ The anticipated dynamic GWL in the boreholes is calculated based on a comparative drawdown with the aquifer testing data with an additional 5 m added to accommodate potential fluctuations in recharge rates and 4.5 m to accommodate regional drawdown impacts.

Figure 6-1: Water Supply Boreholes and Potential Alternative Boreholes

6.2.1. Additional Abstraction Boreholes

It is recommended to locate or drill additional boreholes to supplement the water supply to the plant (during borehole maintenance periods) or supplement the current abstraction boreholes in case the efficiency of the current water supply boreholes deteriorates.

Any new water supply boreholes should be drilled to the following specifications:

- 12-inch (305 mm) open hole drilling to 5 mbgl;
- Install 11-inch (279 mm) mild steel casing to 5 mbgl;
- 10-inch (254 mm) open hole drilling to 80 100 mbgl;
- Install 8-inch (203 mm) PVC casing with screened sections across intersected fractures;
- Fill the annulus with a gravel pack to 5 m above the shallowest screened section;
- Install a grout / bentonite seal above the gravel pack, backfill the annulus with borehole risings;
- Install a 4-inch (102 mm) submersible pump and include a motor cooling sleeve where necessary;
- Install 2-inch (50.8 mm) uPVC rising main to the top of the well; and
- Construct steel well headworks with flange to connect to the water supply system.

If boreholes intersect higher yielding fractures (with blow yields >20 m³/hr), the borehole must be reamed to a larger diameter to accommodate a large pump size. After the construction of the new boreholes are completed, the boreholes must be aquifer tested to verify the sustainable yields. A four (4) hour step test with forty-eight (48) hour constant discharge test should be performed on the boreholes. After aquifer testing has been completed groundwater quality samples should be taken to a lab for analysis to determine the groundwater quality.

6.2.2. Borehole Maintenance

The ability of a borehole to perform optimally can be reduced if sediment builds up in the borehole (i.e., sediments entering the borehole through damaged casing or screens, or precipitation of calcium and iron) or high levels of iron, calcium and magnesium form precipitates which block equipment or casing screens.

The monitoring data will help with determining when boreholes will need to be cleaned (or maintained) so that it can operate optimally and prolong the lifespan of the pumps. It is recommended that boreholes be cleaned every two (2) years unless the monitoring data indicates more frequent cleaning is required (colour changes to brown or red, yields decrease, or water levels drop).

The following borehole maintenance is recommended:

- Using high pressure compressor to flush the sediment and debris from boreholes;
- Brushing (sweeping) the borehole casing (or side walls) with brushes to remove build-up of slime (produced by iron bacteria) or deposits from the casing screens;
- Chemical additives could be used provided this doesn't interfere with the water chemistry needed in the plant or surrounding water supply boreholes;
- Roots could be removed by reaming the borehole, using a wiper tool or welding steel blades onto a heavy rod. Sharper blades should be positioned on the lower portion to assist with cutting roots when the rod is being lowered and blunter blades can be positioned higher up to assist with grabbing the loose roots when pulling the rod out of the borehole. An auger-type fitting may also be an option. The borehole will need to be cleaned regularly to prevent the roots regrowing;
- Steel casing will corrode over time, and it is recommended to install PVC casing in newly drilled boreholes (or uncased) or replace the steel casing in existing boreholes to prolong the life of the borehole;
- Complete a downhole camera survey (in uncased boreholes) to assess if the fractures are blocked which may need to be flushed, brushed or redrilled to a slightly larger diameter to try clear surface deposits on the borehole walls which may be blocking yields.

6.2.3. Groundwater Monitoring

Groundwater monitoring will assist the mine with determining any changes in the aquifer sources (with the quality results) as well as the borehole efficiency (with the abstraction rates, yields and groundwater levels). The collected monitoring data can be used to recalibrate numerical model updates which will allow the mine to detect any changes with the potential water supply in a timely so that an alternative arrangement can be implemented. The following parameters must be monitored:

- Rainfall must be measured daily at the project site. This data can be compared with the groundwater level data to determine recharge responses to the groundwater aquifer;
- Abstraction rates and volumes must be measured on a daily basis. This will be used to track requirements from the plant and the sustainable use of the water supply boreholes. Changes in the demand from the plant above the 18 m³/hr requirement or ability of the water supply boreholes to produce the sustainable yields, will require additional water supply boreholes to be incorporated into the water supply network;
- Groundwater levels must be measured on a weekly basis (in active water supply boreholes) and on a quarterly basis (in unused water supply boreholes). The groundwater levels can be used to monitor if the yields abstracted from the boreholes are sustainable or if scaling or fouling of the borehole may be occurring. Water levels

that start dropping significantly compared to established trends could indicate that maintenance is required to remove scale and/or oxide deposits from the borehole:

- Groundwater level measurements which change by more than 5 m between readings will need to be verified as correct with an additional measurement. Comments should be included with the verified measurement as to the cause of the change in water levels;
- Water quality must be sampled and analysed on a quarterly basis. This will assist in establishing if any changes in the aquifer water sources are occurring as a result of abstraction. Samples must be submitted to an accredited laboratory for analysis. The following constituents must be included in the water quality analysis as a minimum (Table 6-2):
 - Taking note of the water colour (becomes brown or reddish) in the samples could also assist with determining if the borehole will need to be cleaned.

рН	Calcium	Fluoride
Electrical Conductivity	Magnesium	Sulphate
Total Dissolved Solids	Sodium	Nitrate
Total Alkalinity	Potassium	Iron
Total Hardness	Chloride	Manganese

Table 6-2: Water Quality Monitoring Constituents

6.3. Water Management Recommendations

The following recommendations are required to reduce the groundwater abstraction risk for the mine or manage the groundwater resource:

- Integrate the groundwater outcomes into the site water balance and keep the water balance updated throughout the LoM;
- It is recommended to plan the dewatering of the K5 pit well in advance so the dewatered volumes can be used to meet the plant requirements instead of being discharged to the environment. The water in the pit has higher concentrations compared to the groundwater samples which may dictate how much of the pit water can be used during a month (if this needs to be diluted with clean or groundwater contributions). The water quality requirements of the plant will therefore need to be defined as soon as possible or the establishment of a water treatment plant could be considered;
- Establish a covered water storage area nearby to the plant which contains water storage tanks with a minimum capacity of 1 week (~2 700 m³) which can provide an emergency water source to the plant;

- As the water supply boreholes just meet the demand requirement for the plant, it is recommended to include additional water supply boreholes into the network to supplement yields during borehole maintenance periods (once the K5 pit is dewatered) or supplement abstraction in case the efficiency of the current water supply boreholes deteriorates;
- These additional boreholes should be established as soon as possible to prevent any water supply delays to the plant and should preferably be located outside of the Uis River Catchment to reduce the cumulative drawdown impacts within this catchment. Based on the available information there are potentially three (3) boreholes located within a ~13 km radius from the mine which have a combined estimated yield of 23.7 m³/hr. If these boreholes can be located and used, the sustainable yield would need to be assessed with aquifer tests;
- Where processes allow for it, water used in the plant should be recovered and reused as much as possible;
- Reticulation system must be maintained to prevent leaks and minimise losses of water from the system;
- Recover and reuse water from the Uis wastewater treatment works to supplement the plant requirements (if possible);
- Collect and store rainwater in pit areas (when not operational) as an additional temporary source of water, which could supplement the supply from the water supply boreholes when available;
- AfriTin are currently allowed to abstract a total of 75 000 m3/a (permit No. 11429) (AfriTin Mining Limited, 2021). The permitted abstraction volume will need to be increased for the Phase 1 Stage II abstraction requirements

7. Conclusion

The following conclusions are drawn from the hydrogeological assessment:

- The yield demand for the Phase 1 Stage II expansion of 18 m³/hr can be provided by the existing water supply boreholes which have a combined sustainable yield of 18.7 m3/hr based on the interpreted aquifer test results;
- The groundwater quality is not suitable for human consumption, however it can be used as raw water supply in the plant;
- Based on the numerical model simulations the water supply abstractions is deemed to be sustainable, however the water supply abstractions will stress the aquifer due to the low recharge potential of the region. The cumulative abstractions for the proposed 18-year Life of Mine will create a drawdown cone with a maximum extent of ~6.5 km and a drawdown of ~4.5 m;

- Should there be any significant increases in demand from the aquifer (by the mine or third-party groundwater users), draughts or climate changes there may be an impact to the long-term sustainable yield of the wellfield;
- AfriTin will need to install additional boreholes for the Phase 1 Stage II expansion to enable maintenance and to mitigate any losses in yield from the existing water supply boreholes;
- A groundwater monitoring programme has been recommended to assist AfriTin with managing their groundwater resource. Although it is recommended that boreholes be cleaned every two (2) years, any drop in yield or increased drawdown within the water supply borehole can indicate that maintenance is required;
- The groundwater monitoring will also assist AfriTin with determining if there are any changes occurring within the aquifer which may require intervention;
- AfriTin will need to investigate alternative water sources for the planned Phase 2 expansion once water demands for this phase have been confirmed. Abstracting higher yields of groundwater from the possible alternative groundwater wellfields could potentially have significant impacts to the groundwater aquifer in the region. Alternative water supply options such as piping water from the Orano Desalination plant or directly from the sea should also be considered for the Phase 2 expansion.

8. Recommendations

The following recommendations are proposed:

- Integrate the groundwater outcomes into the site water balance to assist with the efficient management of water resources on site and identify and minimise water losses from the system;
- Implement the monitoring, operational and maintenance requirements as outlined in the Water Management Plan (Section 6);
- Schedule borehole maintenance every 2 years unless the monitoring data (yield vs drawdown) indicates more frequent cleaning is required (Section 6.2);
- Locate or drill alternative boreholes to replace the existing boreholes if yields cannot be improved or maintained or to supplement water supply during borehole maintenance periods (after the K5 pit has been drained);
- Establish a covered water storage area nearby to the plant which contains water storage tanks with a minimum capacity of 1 week (~2700 m³) which can provide an emergency water source to the plant;
- AfriTin will need to amend their permitted abstraction volume to account for the required 18 m³/hr (127 440 m³/a) required by the plant for the Phase 1 Stage II expansion;

- Locate third-party groundwater users within a 10 km radius of the mine wellfields and confirm their current abstraction requirements and planned future abstraction requirements;
- It is recommended to plan the dewatering of the K5 pit well in advance so the dewatered volumes can be used to meet the plant requirements instead of being discharged to the environment. The water in the pit has higher concentrations of calcium, magnesium, sodium, potassium chloride, sulphate, iron, manganese and electrical conductivity compared to the groundwater samples which may dictate how much of the pit water can be used during a month (if this needs to be diluted with clean or groundwater contributions). The water quality requirements of the plant will therefore need to be defined as soon as possible or the establishment of a water treatment plant could be considered;
- The numerical model must be recalibrated every 2 (two) years to incorporate the latest monitoring data as well as any changes to the water supply network or plant yield requirements. The model will be an asset to AfriTin to assess any changes which could affect the water supply for the project;
- The numerical model can be refined in future updates to simulate climate change responses to the expected rainfall volumes over the life of mine. The IPCC report indicates that drought events in Southern Africa (caused by the El Nino oscillation) are predicted to become more frequent and intense, which could affect the recharge potential to aquifers in the region.

9. References

AfriTin Mining Limited, 2021. *Uis Tin Mine, Phase 1 Fast Tracked Stage II Definitive Feasibility Study*, s.l.: s.n.

AfriTin Mining, 2017. Geological Overview of the Uis Project Area, s.l.: s.n.

Australian Government - National Water Commission, 2012. *Australian Groundwater Modellng Guidelines,* s.l.: s.n.

BVW Groundwater Consulting Services, 2019. *Key Observations on the Test Pumping of Boreholes at UIS,* s.l.: s.n.

BVW Groundwater Consulting Services, 2019. UIS Tine Project: Report on the Drilling and Test Pumping of Boreholes for the Pilot Tin Processing Plant, s.l.: s.n.

Department of Water Affairs (Namibia), 1988. *Guideline for the Evaluation of Drinking Water for Human Consumption with Regard to Chemical, Physical and Bacteriological Quality,* s.l.: s.n.

Domenico, P. A. & Schwartz, F. W., 1990. Physical and Chemical Hydrogeology, s.l.: s.n.

Environmental Compliance Consultancy, 2021. *Integrated Water Balance Simulation Model,* s.l.: s.n.

Gray, D. R. et al., 2008. A Damara orogen perspective on the assembly of southwestern Gondwana. *Geological Society London Special Publications,* pp. 257-278.

Groundwater Management Institute, 2022. [Online] Available at: <u>https://www.na-mis.com/</u>

Ministry of Agriculture, Water and Rural Development, 2011. *Groundwater in Namibia. An Explanation to the Hydrogeological Map,* s.l.: s.n.

Namibia Water Corporation, 1998. *Guidelines for the Evalution of Drinking-Water for Human Consumption with Regards to Chemical, Physical and Bacteriological Quality,* s.l.: s.n.

National Centers for Environmental Prediction, 2022. *Global Weather Data for SWAT.* [Online] Available at: <u>https://globalweather.tamu.edu/</u>

Strydom & Associates, 2022. *Bathymetric Survey & Volume Calculation of K5 Area, Uis Tin Mine,* s.l.: s.n.

Winker, F., 2010. Groundwater Model of the Swakop River Basin, Namibia, s.l.: s.n.

Appendix A: Methodology

Aquifer testing

A subcontractor (Hammerstein Mining and Drilling) was appointed to undertake the aquifer testing under the supervision of Digby Wells. 48-hour constant discharge (CDT) aquifer pump and recovery tests were carried out on existing boreholes. These tests will be used to determine aquifer parameters that will serve as input into the groundwater model but will also provide input to determine the sustainable yield of each borehole.

The following methodology was used for the CDT tests:

- Boreholes in each cluster were switched off prior to undertaking the aquifer tests in each cluster:
 - Cluster 1: BH1, BH2, BH10;
 - Cluster 2; BH9, BH12;
 - Cluster 3; BH8, BH11;
 - Cluster 4: BH3, BH4, BH5, BH6
- A 30-minute calibration test was undertaken on boreholes which had previously been aquifer tested in 2018 to confirm the previous rates:

Borehole	Previous CDT Rate (m3/hr)	Previous CDT Duration (hours)
BH1	5	8 (recovery in 8 hours)
BH2	6	8 (recovery in 8 hours)
BH3	2	8 (recovery in 8 hours)
BH4	3	8 (recovery in 8 hours)
BH5	2.5	8 (recovery in 8 hours)
BH6	6	8 (recovery in 8 hours)
BH8	17.5	24 (recovery in 24 hours)
BH9	6	8 (recovery in 8 hours)
BH10	17.5	24 (recovery in 24 hours)
BH11	3 (Blow Yield Estimate)	Not tested
BH12	-	Not tested

- A step drawdown and recovery test were undertaken on boreholes which weren't previously aquifer tested (BH11 and BH12). The step test comprised of three 1-hour long steps with increasing rates followed by recovery;
- Following the calibration or step test 48-hour constant discharge test (yield permitting) on each borehole followed by a recovery test (48-hours or to 90% of initial level);
- During the CDT test a water sample was collected every 12-hours and submitted to an Analytical Laboratory in Windhoek Namibia for Analysis.

Appendix B: Laboratory Certificates

Analytical Laboratory Services OUR QUALITY IS IN THE DETAIL

Windhoek info@analab.com.na Tel +264 61 210 13: Cell +264 81 611 884: 71 Newcastle Stree

Walvis Bay

walvisbaylab@analab.com.ne Cell +264 81 122 158 Unit 16, Ben Amathila Ave

PO Box 86782, Windhoek, Namibia

TEST REPORT

To: 🖸	iaby Wells Enviro	nmental SA		
4	8 Grosvenor Road		Date received:	15/Dec/21
В	ryanston		Date analysed:	14 Jan - 8 Feb 2022
2	191		Date reported:	10/Feb/22
S	outh Africa			
Attn: N	Attn: Megan Edwards email: megan.edwards@digbywells.com		Client Reference no.:	AFT 7220
email: <u>n</u>			Quotation no.:	QU-6835
Tel: 2	7117899495		Lab Reference:	I212234
			Enquiries: Ms M	lanuela Mayer
Sample details	S	Borehole samples		
Location of sa	mpling point	Uis, Afritin Mine		
Description of	f sampling point	BH2-1		
Date of sampl	ing	3 Dec 2021,16h00		

Test item number	I212234/1						
				Re	commended	l maximum li	mits
				Hui	man consum	ption	Livestock
Parameter	Value	Units	Classification	Group A	Group B	Group C	watering
рH	7.1		А	6-9	5.5-9.5	4-11	
Electrical Conductivity	651	mS/m	D	150	300	400	
Turbidity	26	NTU	D	1	5	10	
Total Dissolved Solids (calc.)	4126	mg/l					6000
P-Alkalinity as CaCO ₃	0	mg/l					
Total Alkalinity as CaCO ₃	395	mg/l					
Total Hardness as CaCO ₃	1825	mg/l	D	300	650	1300	
Ca-Hardness as CaCO ₃	1084	mg/l	D	375	500	1000	2500
Mg-Hardness as CaCO ₃	741	mg/l	С	290	420	840	2057
Chloride as Cl ⁻	1383	mg/l	D	250	600	1200	1500-3000
Fluoride as F	1.3	mg/l	А	1.5	2.0	3.0	2.0-6.0
Sulphate as SO ₄ ²⁻	992	mg/l	С	200	600	1200	1000
Nitrate as N	17	mg/l	В	10	20	40	100
Nitrite as N	<0.01	mg/l					10
Ammonia as N	<0.02	mg/l					
Sodium as Na	791	mg/l	С	100	400	800	2000
Potassium as K	32	mg/l	А	200	400	800	
Magnesium as Mg	180	mg/l	С	70	100	200	500
Calcium as Ca	434	mg/l	D	150	200	400	1000
Manganese as Mn	0.06	mg/l	В	0.05	1.0	2.0	10
Iron as Fe	2.2	mg/l	D	0.1	1.0	2.0	10
Stability pH, at 25°C	6.3						
Langelier Index	0.7	scaling		>0=scaling, <0	=corrosive, 0=s	stable	
Ryznar Index	5.6	scaling		<6.5=scaling,	>7,5=corrosive,	<u>></u> 6.5 and <u><</u> 7.5	=stable
Corrosivity ratio	7.6	increasing o	corrosive tendency	Applies to wat	er in the pH rar	nge 7-8	
				which also con	tains dissolved	oxygen	

Approved Technical Signatory

Ms S. Rügheimer

ratios <0.2 no corrosive properties ratios >0.2 increasing corrosive tendency

info@analab.com.ni Tel +264 61 210 13: Cell +264 81 611 884: 71 Newcastle Stree

Walvis Bay

walvisbaylab@analab.com.n Cell +264 81 122 158 Unit 16, Ben Amathila Ave

PO Box 86782, Windhoek, Namibia

Remark:

Overall classification of water, considering only constituents that have been tested for: Group D: high risk or water unsuitable for human consumption

Interpretation based on guidelines for the evaluation of drinking water for human consumption, DWA, Namibia, April 1988 and South African Water Quality Guidelines Volume 5: Agricultural water use: Livestock watering, Second Edition, 1996

For practical reasons, the guidelines are divided into four groups. The highest group assigned to any of the constituents determines the classification of the water as a whole. Group A: excellent quality water Group B: good quality water Group C: low risk water Group D: high risk or water unsuitable for human consumption

Ideally water should be either Group A or Group B. If water is classified as Group C, the situation is not yet critical, but attention should be given to those constituents over the Group B limit. If however, the water is classified as Group D urgent and immediate attention is required to reduce the levels of the problem constituents in the water to suitable levels.

Sample acceptance:

Walvis Bay

walvisbaylab@analab.com.n Cell +264 81 122 158 Unit 16, Ben Amathila Ave

PO Box 86782, Windhoek, Namibia

Assessment of water quality for human consumption

Naturally occurring chemicals that are of health significance in drinking water

Fluoride: Exposure to high levels of fluoride, which occurs naturally, can lead to mottling of teeth and, in severe cases, crippling skeletal fluorosis.

1.5-3.5 mg/l fluoride: the threshold for marked dental mottling with associated tooth damage due to softening of enamel is 1.5mg/L. Above this, mottling and tooth damage will probably be noticeable in most continuous users of the water. No other health effects occur.

Chemicals from agricultural activities that are of health significance in drinking water Nitrate and nitrite: In water it has been associated with methaemoglobinaemia, especially in bottle-fed infants

10-20 mg/l nitrate as N: methhaemoglobinaemia may occur in infants. No effects in adults.

Some of the naturally occurring chemicals which occur in drinking water at concentrations below those at which toxic effects may occur.

Chloride: high concentrations of chloride give a salty taste to water. Concentrations in excess of 250 mg/l are increasingly likely to be detected by taste.

Hardness: Depending on the interaction of other factors, such as, pH and alkalinity, water with a hardness above approximately 200 mg/l may cause scale deposition in the pipe work and tanks. On heating, hard waters form deposits of calcium carbonate scale.

pH: Optimum pH 6.5-8.

pH does not exert direct health effects, but may exert indirect health effects via metal solubility.

Sodium: The average taste threshold for sodium is about 200 mg/l.

Sulphate: It is generally considered that the taste impairment is minimal at levels below 250 mg/l.

Magnesium: The average taste threshold for magnesium is about 70 mg/l

Total dissolved solids: The palatability of water with a TDS level of less than 600 mg/l is generally considered to be good; drinking water becomes significantly and increasingly unpalatable at TDS levels greater than about 1000 mg/l.

Turbidity is a measure of the light-scattering ability of water and is indicative of the concentration of suspended matter in water.

Microorganisms are often associated with turbidity, hence low turbidity minimises the potential for transmission of infectious diseases. Turbidity also affects the aesthetic quality of water.

Turbidity in water is caused by the presence of suspended matter which usually consists of a mixture of inorganic matter, such as clay and soil particles and organic matter.

Turbidity may also be associated with the presence of inorganic ions such as manganese(II) and iron(II).

The consumption of turbid water *per se* does not have any direct health effects, but associated effects due to microbial contamination or the ingestion of substances bound to particulate matter, do.

Aesthetic effects (appearance, taste, odour) of turbidity can be mitigated or removed by decantation or by filtration (or by both), accelerated, if necessary, by previous aeration

chnical Signatory

Ms S. Rügheimer

Date of sampling

Windhoek info@analab.com.ni Tel +264 61 210 13; Cell +264 81 611 884; 71 Newcastle Stree

Walvis Bay

walvisbaylab@analab.com.n Cell +264 81 122 158 Unit 16, Ben Amathila Ave

PO Box 86782, Windhoek, Namibia

TEST REPORT

To:	Digby Wells Enviro	nmental SA		
	48 Grosvenor Road		Date received:	15/Dec/21
	Bryanston		Date analysed:	14 Jan -8 Feb 2022
	2191		Date reported:	10/Feb/22
	South Africa			
Attn:	Attn: Megan Edwards		Client Reference no.:	AFT 7220
email:	<u>megan.edwards@dig</u>	<u>gbywells.com</u>	Quotation no.:	QU-6835
Tel:	27117899495		Lab Reference:	1212234
			Enquiries: Ms M	1anuela Mayer
Sample detai	ls	Borehole samples		
Location of s	ampling point	Uis, Afritin Mine		
Description of	of sampling point	BH2-3		

4 Dec 2021, 06h42

Test item number	1212234/2						
				Re	ecommended	l maximum li	mits
				Hu	man consum	ption	Livestock
Parameter	Value	Units	Classification	Group A	Group B	Group C	watering
рН	6.7		А	6-9	5.5-9.5	4-11	
Electrical Conductivity	652	mS/m	D	150	300	400	
Turbidity	0.30	NTU	А	1	5	10	
Total Dissolved Solids (calc.)	4195	mg/l					6000
P-Alkalinity as CaCO ₃	0	mg/l					
Total Alkalinity as CaCO ₃	395	mg/l					
Total Hardness as CaCO ₃	1813	mg/l	D	300	650	1300	
Ca-Hardness as CaCO ₃	1064	mg/l	D	375	500	1000	2500
Mg-Hardness as CaCO ₃	749	mg/l	С	290	420	840	2057
Chloride as Cl ⁻	1452	mg/l	D	250	600	1200	1500-3000
Fluoride as F	1.3	mg/l	А	1.5	2.0	3.0	2.0-6.0
Sulphate as SO ₄ ²⁻	1002	mg/l	С	200	600	1200	1000
Nitrate as N	19	mg/l	В	10	20	40	100
Nitrite as N	<0.01	mg/l					10
Ammonia as N	<0.02	mg/l					
Sodium as Na	778	mg/l	С	100	400	800	2000
Potassium as K	32	mg/l	А	200	400	800	
Magnesium as Mg	182	mg/l	С	70	100	200	500
Calcium as Ca	426	mg/l	D	150	200	400	1000
Manganese as Mn	<0.01	mg/l	А	0.05	1.0	2.0	10
Iron as Fe	0.01	mg/l	А	0.1	1.0	2.0	10
Stability pH, at 25°C	6.3						
Langelier Index	0.4	scaling		>0=scaling, <0)=corrosive, 0=	stable	
Ryznar Index	6.0	scaling		<6.5=scaling,	>7,5=corrosive,	<u>></u> 6.5 and <u><</u> 7.5	=stable
Corrosivity ratio	7.8	increasing co	prrosive tendency	Applies to wat	er in the pH rar	nge 7-8	
				which also cor	tains dissolved	loxygen	

ratios <0.2 no corrosive properties ratios >0.2 increasing corrosive tendency

This test report is only valid without any alterations and shall not be published or reproduced excep laboratory. Page 4 of 45

info@analab.com.ni Tel +264 61 210 13; Cell +264 81 611 884; 71 Newcastle Stree

Walvis Bay

walvisbaylab@analab.com.n Cell +264 81 122 158 Unit 16, Ben Amathila Ave

PO Box 86782, Windhoek, Namibia

Remark:

Overall classification of water, considering only constituents that have been tested for: Group D: high risk or water unsuitable for human consumption

Interpretation based on guidelines for the evaluation of drinking water for human consumption, DWA, Namibia, April 1988 and South African Water Quality Guidelines Volume 5: Agricultural water use: Livestock watering, Second Edition, 1996

For practical reasons, the guidelines are divided into four groups. The highest group assigned to any of the constituents determines the classification of the water as a whole. Group A: excellent quality water Group B: good quality water Group C: low risk water Group D: high risk or water unsuitable for human consumption

Ideally water should be either Group A or Group B. If water is classified as Group C, the situation is not yet critical, but attention should be given to those constituents over the Group B limit. If however, the water is classified as Group D urgent and immediate attention is required to reduce the levels of the problem constituents in the water to suitable levels.

Sample acceptance:

Walvis Bay

walvisbaylab@analab.com.n Cell +264 81 122 158 Unit 16, Ben Amathila Ave

PO Box 86782, Windhoek, Namibia

Assessment of water quality for human consumption

Naturally occurring chemicals that are of health significance in drinking water

Fluoride: Exposure to high levels of fluoride, which occurs naturally, can lead to mottling of teeth and, in severe cases, crippling skeletal fluorosis.

1.5-3.5 mg/l fluoride: the threshold for marked dental mottling with associated tooth damage due to softening of enamel is 1.5mg/L. Above this, mottling and tooth damage will probably be noticeable in most continuous users of the water. No other health effects occur.

Chemicals from agricultural activities that are of health significance in drinking water Nitrate and nitrite: In water it has been associated with methaemoglobinaemia, especially in bottle-fed infants 10-20 mg/l nitrate as N: methaemoglobinaemia may occur in infants. No effects in adults.

Some of the naturally occurring chemicals which occur in drinking water at concentrations below those at which toxic effects may occur.

Chloride: high concentrations of chloride give a salty taste to water. Concentrations in excess of 250 mg/l are increasingly likely to be detected by taste.

Hardness: Depending on the interaction of other factors, such as, pH and alkalinity, water with a hardness above approximately 200 mg/l may cause scale deposition in the pipe work and tanks. On heating, hard waters form deposits of calcium carbonate scale.

pH: Optimum pH 6.5-8.

pH does not exert direct health effects, but may exert indirect health effects via metal solubility.

Sodium: The average taste threshold for sodium is about 200 mg/l.

Sulphate: It is generally considered that the taste impairment is minimal at levels below 250 mg/l.

Magnesium: The average taste threshold for magnesium is about 70 mg/l

Total dissolved solids: The palatability of water with a TDS level of less than 600 mg/l is generally considered to be good; drinking water becomes significantly and increasingly unpalatable at TDS levels greater than about 1000 mg/l.

Turbidity is a measure of the light-scattering ability of water and is indicative of the concentration of suspended matter in water.

Microorganisms are often associated with turbidity, hence low turbidity minimises the potential for transmission of infectious diseases. Turbidity also affects the aesthetic quality of water.

Turbidity in water is caused by the presence of suspended matter which usually consists of a mixture of inorganic matter, such as clay and soil particles and organic matter.

Turbidity may also be associated with the presence of inorganic ions such as manganese(II) and iron(II).

The consumption of turbid water *per se* does not have any direct health effects, but associated effects due to microbial contamination or the ingestion of substances bound to particulate matter, do.

Aesthetic effects (appearance, taste, odour) of turbidity can be mitigated or removed by decantation or by filtration (or by both), accelerated, if necessary, by previous aeration

chnical Signatory

Ms S. Rügheimer

Analytical Laboratory Services OUR QUALITY IS IN THE DETAIL

Date of sampling

Windhoek info@analab.com.ne Tel +264 61 210 13: Cell +264 81 611 884: 71 Newcastle Stree

Walvis Bay

walvisbaylab@analab.com.ne Cell +264 81 122 158 Unit 16, Ben Amathila Ave

PO Box 86782, Windhoek, Namibia

TEST REPORT

To:	Digby Wells Enviro	nmental SA		
	48 Grosvenor Road		Date received:	15/Dec/21
	Bryanston		Date analysed:	14 Jan - 8 Feb 2022
	2191		Date reported:	10/Feb/22
	South Africa			
Attn:	Attn: Megan Edwards		Client Reference no.:	AFT 7220
email:	megan.edwards@dig	<u>gbywells.com</u>	Quotation no.:	QU-6835
Tel:	27117899495		Lab Reference:	1212234
			Enquiries: Ms M	1anuela Mayer
Sample deta	ills	Borehole samples		
Location of	sampling point	Uis, Afritin Mine		
Description	of sampling point	BH2-4		

4 Dec 2021, 16h10

Test item number	1212234/3						
				Re	ecommended	l maximum li	mits
				Hu	man consum	ption	Livestock
Parameter	Value	Units	Classification	Group A	Group B	Group C	watering
рH	6.9		А	6-9	5.5-9.5	4-11	
Electrical Conductivity	652	mS/m	D	150	300	400	
Turbidity	0.55	NTU	А	1	5	10	
Total Dissolved Solids (calc.)	4096	mg/l					6000
P-Alkalinity as CaCO ₃	0	mg/l					
Total Alkalinity as CaCO ₃	400	mg/l					
Total Hardness as CaCO ₃	1817	mg/l	D	300	650	1300	
Ca-Hardness as CaCO ₃	1084	mg/l	D	375	500	1000	2500
Mg-Hardness as CaCO ₃	733	mg/l	С	290	420	840	2057
Chloride as Cl ⁻	1406	mg/l	D	250	600	1200	1500-3000
Fluoride as F	1.2	mg/l	A	1.5	2.0	3.0	2.0-6.0
Sulphate as SO ₄ ²⁻	932	mg/l	С	200	600	1200	1000
Nitrate as N	19	mg/l	В	10	20	40	100
Nitrite as N	0.01	mg/l					10
Ammonia as N	<0.02	mg/l					
Sodium as Na	790	mg/l	С	100	400	800	2000
Potassium as K	31	mg/l	А	200	400	800	
Magnesium as Mg	178	mg/l	С	70	100	200	500
Calcium as Ca	434	mg/l	D	150	200	400	1000
Manganese as Mn	<0.01	mg/l	А	0.05	1.0	2.0	10
Iron as Fe	0.01	mg/l	А	0.1	1.0	2.0	10
Stability pH, at 25°C	6.3						
Langelier Index	0.6	scaling		>0=scaling, <0)=corrosive, 0=	stable	
Ryznar Index	5.7	scaling		<6.5=scaling,	>7,5=corrosive,	<u>></u> 6.5 and <u><</u> 7.5	=stable
Corrosivity ratio	7.4	increasing co	orrosive tendency	Applies to wat	er in the pH rar	nge 7-8	
				which also cor	tains dissolved	oxygen	

ratios <0.2 no corrosive properties ratios >0.2 increasing corrosive tendency

This test report is only valid without any alterations and shall not be published or reproduced excep Page 7 of 45 laboratory.

info@analab.com.ni Tel +264 61 210 13; Cell +264 81 611 884; 71 Newcastle Stree

Walvis Bay

walvisbaylab@analab.com.n Cell +264 81 122 158 Unit 16, Ben Amathila Ave

PO Box 86782, Windhoek, Namibia

Remark:

Overall classification of water, considering only constituents that have been tested for: Group D: high risk or water unsuitable for human consumption

Interpretation based on guidelines for the evaluation of drinking water for human consumption, DWA, Namibia, April 1988 and South African Water Quality Guidelines Volume 5: Agricultural water use: Livestock watering, Second Edition, 1996

For practical reasons, the guidelines are divided into four groups. The highest group assigned to any of the constituents determines the classification of the water as a whole. Group A: excellent quality water Group B: good quality water Group C: low risk water Group D: high risk or water unsuitable for human consumption

Ideally water should be either Group A or Group B. If water is classified as Group C, the situation is not yet critical, but attention should be given to those constituents over the Group B limit. If however, the water is classified as Group D urgent and immediate attention is required to reduce the levels of the problem constituents in the water to suitable levels.

Sample acceptance:

Walvis Bay

walvisbaylab@analab.com.n Cell +264 81 122 158 Unit 16, Ben Amathila Ave

PO Box 86782, Windhoek, Namibia

Assessment of water quality for human consumption

Naturally occurring chemicals that are of health significance in drinking water

Fluoride: Exposure to high levels of fluoride, which occurs naturally, can lead to mottling of teeth and, in severe cases, crippling skeletal fluorosis.

1.5-3.5 mg/l fluoride: the threshold for marked dental mottling with associated tooth damage due to softening of enamel is 1.5mg/L. Above this, mottling and tooth damage will probably be noticeable in most continuous users of the water. No other health effects occur.

Chemicals from agricultural activities that are of health significance in drinking water Nitrate and nitrite: In water it has been associated with methaemoglobinaemia, especially in bottle-fed infants 10-20 mg/l nitrate as N: methaemoglobinaemia may occur in infants. No effects in adults.

Some of the naturally occurring chemicals which occur in drinking water at concentrations below those at which toxic effects may occur.

Chloride: high concentrations of chloride give a salty taste to water. Concentrations in excess of 250 mg/l are increasingly likely to be detected by taste.

Hardness: Depending on the interaction of other factors, such as, pH and alkalinity, water with a hardness above approximately 200 mg/l may cause scale deposition in the pipe work and tanks. On heating, hard waters form deposits of calcium carbonate scale.

pH: Optimum pH 6.5-8.

pH does not exert direct health effects, but may exert indirect health effects via metal solubility.

Sodium: The average taste threshold for sodium is about 200 mg/l.

Sulphate: It is generally considered that the taste impairment is minimal at levels below 250 mg/l.

Magnesium: The average taste threshold for magnesium is about 70 mg/l

Total dissolved solids: The palatability of water with a TDS level of less than 600 mg/l is generally considered to be good; drinking water becomes significantly and increasingly unpalatable at TDS levels greater than about 1000 mg/l.

Turbidity is a measure of the light-scattering ability of water and is indicative of the concentration of suspended matter in water.

Microorganisms are often associated with turbidity, hence low turbidity minimises the potential for transmission of infectious diseases. Turbidity also affects the aesthetic quality of water.

Turbidity in water is caused by the presence of suspended matter which usually consists of a mixture of inorganic matter, such as clay and soil particles and organic matter.

Turbidity may also be associated with the presence of inorganic ions such as manganese(II) and iron(II). The consumption of turbid water *per se* does not have any direct health effects, but associated effects due

to microbial contamination or the ingestion of substances bound to particulate matter, do.

Aesthetic effects (appearance, taste, odour) of turbidity can be mitigated or removed by decantation or by filtration (or by both), accelerated, if necessary, by previous aeration

chnical Signatory

Ms S. Rügheimer

Date of sampling

Windhoek info@analab.com.ni Tel +264 61 210 13; Cell +264 81 611 884; 71 Newcastle Stree

Walvis Bay

walvisbaylab@analab.com.n Cell +264 81 122 158 Unit 16, Ben Amathila Ave

PO Box 86782, Windhoek, Namibia

TEST REPORT

To:	Digby Wells Enviro	nmental SA		
	48 Grosvenor Road		Date received:	15/Dec/21
	Bryanston		Date analysed:	14 Jan -8 Feb 2022
	2191		Date reported:	10/Feb/22
	South Africa			
Attn:	Attn: Megan Edwards		Client Reference no.:	AFT 7220
email:	megan.edwards@dig	<u>gbywells.com</u>	Quotation no.:	QU-6835
Tel:	27117899495		Lab Reference:	1212234
			Enquiries: Ms M	lanuela Mayer
Sample deta	ils	Borehole samples		
Location of	sampling point	Uis, Afritin Mine		
Description	of sampling point	BH2-5		

5 Dec 2021, 12h35

Test item number	1212234/4						
				Re	ecommended	maximum li	mits
				Hu	man consum	ption	Livestock
Parameter	Value	Units	Classification	Group A	Group B	Group C	watering
рH	7.0		А	6-9	5.5-9.5	4-11	
Electrical Conductivity	654	mS/m	D	150	300	400	
Turbidity	0.35	NTU	А	1	5	10	
Total Dissolved Solids (calc.)	4120	mg/l					6000
P-Alkalinity as CaCO ₃	0	mg/l					
Total Alkalinity as CaCO ₃	410	mg/l					
Total Hardness as CaCO ₃	1810	mg/l	D	300	650	1300	
Ca-Hardness as CaCO ₃	1069	mg/l	D	375	500	1000	2500
Mg-Hardness as CaCO ₃	741	mg/l	С	290	420	840	2057
Chloride as Cl	1429	mg/l	D	250	600	1200	1500-3000
Fluoride as F ⁻	1.2	mg/l	А	1.5	2.0	3.0	2.0-6.0
Sulphate as SO ₄ ²⁻	942	mg/l	С	200	600	1200	1000
Nitrate as N	17	mg/l	В	10	20	40	100
Nitrite as N	0.01	mg/l					10
Ammonia as N	<0.02	mg/l					
Sodium as Na	787	mg/l	С	100	400	800	2000
Potassium as K	31	mg/l	А	200	400	800	
Magnesium as Mg	180	mg/l	С	70	100	200	500
Calcium as Ca	428	mg/l	D	150	200	400	1000
Manganese as Mn	<0.01	mg/l	А	0.05	1.0	2.0	10
Iron as Fe	0.01	mg/l	А	0.1	1.0	2.0	10
Stability pH, at 25°C	6.3						
Langelier Index	0.6	scaling		>0=scaling, <0	ecorrosive, 0=	stable	
Ryznar Index	5.7	scaling		<6.5=scaling,	>7,5=corrosive,	<u>></u> 6.5 and <u><</u> 7.5	=stable
Corrosivity ratio	7.3	increasing co	prrosive tendency	Applies to wat	er in the pH rar	nge 7-8	

which also contains dissolved oxygen ratios <0.2 no corrosive properties ratios >0.2 increasing corrosive tendency

This test report is only valid without any alterations and shall not be published or reproduced excep laboratory. Page 10 of 45

info@analab.com.ni Tel +264 61 210 13; Cell +264 81 611 884; 71 Newcastle Stree

Walvis Bay

walvisbaylab@analab.com.n Cell +264 81 122 158 Unit 16, Ben Amathila Ave

PO Box 86782, Windhoek, Namibia

Remark:

Overall classification of water, considering only constituents that have been tested for: Group D: high risk or water unsuitable for human consumption

Interpretation based on guidelines for the evaluation of drinking water for human consumption, DWA, Namibia, April 1988 and South African Water Quality Guidelines Volume 5: Agricultural water use: Livestock watering, Second Edition, 1996

For practical reasons, the guidelines are divided into four groups. The highest group assigned to any of the constituents determines the classification of the water as a whole. Group A: excellent quality water Group B: good quality water Group C: low risk water Group D: high risk or water unsuitable for human consumption

Ideally water should be either Group A or Group B. If water is classified as Group C, the situation is not yet critical, but attention should be given to those constituents over the Group B limit. If however, the water is classified as Group D urgent and immediate attention is required to reduce the levels of the problem constituents in the water to suitable levels.

Sample acceptance:

Walvis Bay

walvisbaylab@analab.com.n Cell +264 81 122 158 Unit 16, Ben Amathila Ave

PO Box 86782, Windhoek, Namibia

Assessment of water quality for human consumption

Naturally occurring chemicals that are of health significance in drinking water

Fluoride: Exposure to high levels of fluoride, which occurs naturally, can lead to mottling of teeth and, in severe cases, crippling skeletal fluorosis.

1.5-3.5 mg/l fluoride: the threshold for marked dental mottling with associated tooth damage due to softening of enamel is 1.5mg/L. Above this, mottling and tooth damage will probably be noticeable in most continuous users of the water. No other health effects occur.

Chemicals from agricultural activities that are of health significance in drinking water Nitrate and nitrite: In water it has been associated with methaemoglobinaemia, especially in bottle-fed infants 10-20 mg/l nitrate as N: methaemoglobinaemia may occur in infants. No effects in adults.

Chloride: high concentrations of chloride give a salty taste to water. Concentrations in excess of 250 mg/l are increasingly likely to be detected by taste.

Hardness: Depending on the interaction of other factors, such as, pH and alkalinity, water with a hardness above approximately 200 mg/l may cause scale deposition in the pipe work and tanks. On heating, hard waters form deposits of calcium carbonate scale.

pH: Optimum pH 6.5-8.

pH does not exert direct health effects, but may exert indirect health effects via metal solubility.

Sodium: The average taste threshold for sodium is about 200 mg/l.

Sulphate: It is generally considered that the taste impairment is minimal at levels below 250 mg/l.

Magnesium: The average taste threshold for magnesium is about 70 mg/l

Total dissolved solids: The palatability of water with a TDS level of less than 600 mg/l is generally considered to be good; drinking water becomes significantly and increasingly unpalatable at TDS levels greater than about 1000 mg/l.

Turbidity is a measure of the light-scattering ability of water and is indicative of the concentration of suspended matter in water.

Microorganisms are often associated with turbidity, hence low turbidity minimises the potential for transmission of infectious diseases. Turbidity also affects the aesthetic quality of water.

Turbidity in water is caused by the presence of suspended matter which usually consists of a mixture of inorganic matter, such as clay and soil particles and organic matter.

Turbidity may also be associated with the presence of inorganic ions such as manganese(II) and iron(II).

The consumption of turbid water *per se* does not have any direct health effects, but associated effects due to microbial contamination or the ingestion of substances bound to particulate matter, do.

Aesthetic effects (appearance, taste, odour) of turbidity can be mitigated or removed by decantation or by filtration (or by both), accelerated, if necessary, by previous aeration

Date of sampling

Windhoek info@analab.com.ni Tel +264 61 210 13; Cell +264 81 611 884; 71 Newcastle Stree

Walvis Bay

walvisbaylab@analab.com.n Cell +264 81 122 158 Unit 16, Ben Amathila Ave

PO Box 86782, Windhoek, Namibia

TEST REPORT

To: D	igby Wells Enviro)	nmental SA		
4	8 Grosvenor Road		Date received:	15/Dec/21
В	ryanston		Date analysed:	14 Jan -8 Feb 2022
2	191		Date reported:	10/Feb/22
S	outh Africa			
Attn: M	Attn: Megan Edwards		Client Reference no.:	AFT 7220
email: <u>n</u>	<u>negan.edwards@di</u>	<u>gbywells.com</u>	Quotation no.:	QU-6835
Tel: 2	7117899495		Lab Reference:	1212234
			Enquiries: Ms M	lanuela Mayer
Sample details	S	Borehole samples		
Location of sa	mpling point	Uis, Afritin Mine		
Description of	f sampling point	BH2-6		

5 Dec 2021, 16h00

Test item number	1212234/5						
				Re	commended	l maximum li	mits
				Hui	man consum	ption	Livestock
Parameter	Value	Units	Classification	Group A	Group B	Group C	watering
рН	6.97		А	6-9	5.5-9.5	4-11	
Electrical Conductivity	657	mS/m	D	150	300	400	
Turbidity	0.60	NTU	А	1	5	10	
Total Dissolved Solids (calc.)	4148	mg/l					6000
P-Alkalinity as CaCO ₃	0	mg/l					
Total Alkalinity as CaCO ₃	405	mg/l					
Total Hardness as CaCO ₃	1820	mg/l	D	300	650	1300	
Ca-Hardness as CaCO ₃	1066	mg/l	D	375	500	1000	2500
Mg-Hardness as CaCO ₃	754	mg/l	С	290	420	840	2057
Chloride as Cl ⁻	1406	mg/l	D	250	600	1200	1500-3000
Fluoride as F	1.2	mg/l	А	1.5	2.0	3.0	2.0-6.0
Sulphate as SO ₄ ²⁻	1008	mg/l	С	200	600	1200	1000
Nitrate as N	13	mg/l	В	10	20	40	100
Nitrite as N	<0.01	mg/l					10
Ammonia as N	<0.02	mg/l					
Sodium as Na	790	mg/l	С	100	400	800	2000
Potassium as K	31	mg/l	А	200	400	800	
Magnesium as Mg	183	mg/l	С	70	100	200	500
Calcium as Ca	427	mg/l	D	150	200	400	1000
Manganese as Mn	<0.01	mg/l	А	0.05	1.0	2.0	10
Iron as Fe	0.01	mg/l	А	0.1	1.0	2.0	10
Stability pH, at 25°C	6.3						
Langelier Index	0.6	scaling		>0=scaling, <0	=corrosive, 0=	stable	
Ryznar Index	5.7	scaling		<6.5=scaling,	>7,5=corrosive	<u>></u> 6.5 and <u><</u> 7.5	=stable
Corrosivity ratio	7.5	increasing co	orrosive tendency	Applies to wat	er in the pH rar	nge 7-8	
				which also con	tains dissolved	loxygen	

ratios <0.2 no corrosive properties ratios >0.2 increasing corrosive tendency

This test report is only valid without any alterations and shall not be published or reproduced excep laboratory. Page 13 of 45

info@analab.com.ni Tel +264 61 210 13; Cell +264 81 611 884; 71 Newcastle Stree

Walvis Bay

walvisbaylab@analab.com.n Cell +264 81 122 158 Unit 16, Ben Amathila Ave

PO Box 86782, Windhoek, Namibia

Remark:

Overall classification of water, considering only constituents that have been tested for: Group D: high risk or water unsuitable for human consumption

Interpretation based on guidelines for the evaluation of drinking water for human consumption, DWA, Namibia, April 1988 and South African Water Quality Guidelines Volume 5: Agricultural water use: Livestock watering, Second Edition, 1996

For practical reasons, the guidelines are divided into four groups. The highest group assigned to any of the constituents determines the classification of the water as a whole. Group A: excellent quality water Group B: good quality water Group C: low risk water Group D: high risk or water unsuitable for human consumption

Ideally water should be either Group A or Group B. If water is classified as Group C, the situation is not yet critical, but attention should be given to those constituents over the Group B limit. If however, the water is classified as Group D urgent and immediate attention is required to reduce the levels of the problem constituents in the water to suitable levels.

Sample acceptance:

Walvis Bay

walvisbaylab@analab.com.n Cell +264 81 122 158 Unit 16, Ben Amathila Ave

PO Box 86782, Windhoek, Namibia

Assessment of water quality for human consumption

Naturally occurring chemicals that are of health significance in drinking water

Fluoride: Exposure to high levels of fluoride, which occurs naturally, can lead to mottling of teeth and, in severe cases, crippling skeletal fluorosis.

1.5-3.5 mg/l fluoride: the threshold for marked dental mottling with associated tooth damage due to softening of enamel is 1.5mg/L. Above this, mottling and tooth damage will probably be noticeable in most continuous users of the water. No other health effects occur.

Chemicals from agricultural activities that are of health significance in drinking water

Nitrate and nitrite: In water it has been associated with methaemoglobinaemia, especially in bottle-fed infants 10-20 mg/l nitrate as N: methhaemoglobinaemia may occur in infants. No effects in adults.

toxic effects may occur.

Chloride: high concentrations of chloride give a salty taste to water. Concentrations in excess of 250 mg/l are increasingly likely to be detected by taste.

Hardness: Depending on the interaction of other factors, such as, pH and alkalinity, water with a hardness above approximately 200 mg/l may cause scale deposition in the pipe work and tanks. On heating, hard waters form deposits of calcium carbonate scale.

pH: Optimum pH 6.5-8.

pH does not exert direct health effects, but may exert indirect health effects via metal solubility.

Sodium: The average taste threshold for sodium is about 200 mg/l.

Sulphate: It is generally considered that the taste impairment is minimal at levels below 250 mg/l.

Magnesium: The average taste threshold for magnesium is about 70 mg/l

Total dissolved solids: The palatability of water with a TDS level of less than 600 mg/l is generally considered to be good; drinking water becomes significantly and increasingly unpalatable at TDS levels greater than about 1000 mg/l.

Turbidity is a measure of the light-scattering ability of water and is indicative of the concentration of suspended matter in water.

Microorganisms are often associated with turbidity, hence low turbidity minimises the potential for transmission of infectious diseases. Turbidity also affects the aesthetic quality of water.

Turbidity in water is caused by the presence of suspended matter which usually consists of a mixture of inorganic matter, such as clay and soil particles and organic matter.

Turbidity may also be associated with the presence of inorganic ions such as manganese(II) and iron(II).

The consumption of turbid water *per se* does not have any direct health effects, but associated effects due to microbial contamination or the ingestion of substances bound to particulate matter, do.

Aesthetic effects (appearance, taste, odour) of turbidity can be mitigated or removed by decantation or by filtration (or by both), accelerated, if necessary, by previous aeration

Date of sampling

Windhoek info@analab.com.ni Tel +264 61 210 13; Cell +264 81 611 884; 71 Newcastle Stree

Walvis Bay

walvisbaylab@analab.com.n Cell +264 81 122 158 Unit 16, Ben Amathila Ave

PO Box 86782, Windhoek, Namibia

TEST REPORT

To:	Digby Wells Enviro	nmental SA		
	48 Grosvenor Road		Date received:	15/Dec/21
	Bryanston		Date analysed:	14 Jan - 8 Feb 2022
	2191		Date reported:	10/Feb/22
	South Africa			
Attn:	ttn: Megan Edwards nail: <u>megan.edwards@digbywells.com</u>		Client Reference no .:	AFT 7220
email:			Quotation no.:	QU-6835
Tel:	27117899495		Lab Reference:	I212234
			Enquiries: Ms M	1anuela Mayer
Sample deta	ils	Borehole samples		
Location of	sampling point	Uis, Afritin Mine		
Description	of sampling point	BH1-1		

7 Dec 2021, 08h56

Test item number	1212234/6						
				Re	commended	maximum li	mits
				Hui	man consum	ption	Livestock
Parameter	Value	Units	Classification	Group A	Group B	Group C	watering
рH	7.5		А	6-9	5.5-9.5	4-11	
Electrical Conductivity	535	mS/m	D	150	300	400	
Turbidity	1.3	NTU	В	1	5	10	
Total Dissolved Solids (calc.)	3295	mg/l					6000
P-Alkalinity as CaCO ₃	0	mg/l					
Total Alkalinity as CaCO ₃	525	mg/l					
Total Hardness as CaCO ₃	979	mg/l	С	300	650	1300	
Ca-Hardness as CaCO ₃	497	mg/l	В	375	500	1000	2500
Mg-Hardness as CaCO ₃	482	mg/l	С	290	420	840	2057
Chloride as Cl ⁻	1060	mg/l	С	250	600	1200	1500-3000
Fluoride as F	1.8	mg/l	В	1.5	2.0	3.0	2.0-6.0
Sulphate as SO ₄ ²⁻	561	mg/l	В	200	600	1200	1000
Nitrate as N	47	mg/l	D	10	20	40	100
Nitrite as N	0.01	mg/l					10
Ammonia as N	<0.02	mg/l					
Sodium as Na	799	mg/l	С	100	400	800	2000
Potassium as K	32	mg/l	A	200	400	800	
Magnesium as Mg	117	mg/l	С	70	100	200	500
Calcium as Ca	199	mg/l	В	150	200	400	1000
Manganese as Mn	<0.01	mg/l	А	0.05	1.0	2.0	10
Iron as Fe	0.01	mg/l	А	0.1	1.0	2.0	10
Stability pH, at 25°C	6.5						
Langelier Index	0.9	scaling		>0=scaling, <0	=corrosive, 0=s	stable	
Ryznar Index	5.6	scaling		<6.5=scaling, 3	>7,5=corrosive,	<u>></u> 6.5 and <u><</u> 7.5	=stable
Corrosivity ratio	4.0	increasing co	orrosive tendency	Applies to wat	er in the pH rar	ige 7-8	

Applies to water in the pH range 7-8 which also contains dissolved oxygen ratios <0.2 no corrosive properties ratios >0.2 increasing corrosive tendency

This test report is only valid without any alterations and shall not be published or reproduced excep laboratory. Page 16 of 45

info@analab.com.ni Tel +264 61 210 13; Cell +264 81 611 884; 71 Newcastle Stree

Walvis Bay

walvisbaylab@analab.com.n Cell +264 81 122 158 Unit 16, Ben Amathila Ave

PO Box 86782, Windhoek, Namibia

Remark:

Overall classification of water, considering only constituents that have been tested for: Group D: high risk or water unsuitable for human consumption

Interpretation based on guidelines for the evaluation of drinking water for human consumption, DWA, Namibia, April 1988 and South African Water Quality Guidelines Volume 5: Agricultural water use: Livestock watering, Second Edition, 1996

For practical reasons, the guidelines are divided into four groups. The highest group assigned to any of the constituents determines the classification of the water as a whole. Group A: excellent quality water Group B: good quality water Group C: low risk water Group D: high risk or water unsuitable for human consumption

Ideally water should be either Group A or Group B. If water is classified as Group C, the situation is not yet critical, but attention should be given to those constituents over the Group B limit. If however, the water is classified as Group D urgent and immediate attention is required to reduce the levels of the problem constituents in the water to suitable levels.

Sample acceptance:

Walvis Bay

walvisbaylab@analab.com.n Cell +264 81 122 158 Unit 16, Ben Amathila Ave

PO Box 86782, Windhoek, Namibia

Assessment of water quality for human consumption

Naturally occurring chemicals that are of health significance in drinking water

Fluoride: Exposure to high levels of fluoride, which occurs naturally, can lead to mottling of teeth and, in severe cases, crippling skeletal fluorosis.

1.5-3.5 mg/l fluoride: the threshold for marked dental mottling with associated tooth damage due to softening of enamel is 1.5mg/L. Above this, mottling and tooth damage will probably be noticeable in most continuous users of the water. No other health effects occur.

Chemicals from agricultural activities that are of health significance in drinking water Nitrate and nitrite: In water it has been associated with methaemoglobinaemia, especially in bottle-fed infants >20 mg/l nitrate as N: methemoglobinaemia occurs in infants. Occurrence of mucous membrane irritation in adults

Some of the naturally occurring chemicals which occur in drinking water at concentrations below those at which toxic effects may occur.

Chloride: high concentrations of chloride give a salty taste to water. Concentrations in excess of 250 mg/l are increasingly likely to be detected by taste.

Hardness: Depending on the interaction of other factors, such as, pH and alkalinity, water with a hardness above approximately 200 mg/l may cause scale deposition in the pipe work and tanks. On heating, hard waters form deposits of calcium carbonate scale.

pH: Optimum pH 6.5-8.

pH does not exert direct health effects, but may exert indirect health effects via metal solubility.

Sodium: The average taste threshold for sodium is about 200 mg/l.

Sulphate: It is generally considered that the taste impairment is minimal at levels below 250 mg/l.

Magnesium: The average taste threshold for magnesium is about 70 mg/l

Total dissolved solids: The palatability of water with a TDS level of less than 600 mg/l is generally considered to be good; drinking water becomes significantly and increasingly unpalatable at TDS levels greater than about 1000 mg/l.

Turbidity is a measure of the light-scattering ability of water and is indicative of the concentration of suspended matter in water.

Microorganisms are often associated with turbidity, hence low turbidity minimises the potential for transmission of infectious diseases. Turbidity also affects the aesthetic quality of water.

Turbidity in water is caused by the presence of suspended matter which usually consists of a mixture of inorganic matter, such as clay and soil particles and organic matter.

Turbidity may also be associated with the presence of inorganic ions such as manganese(II) and iron(II).

The consumption of turbid water *per se* does not have any direct health effects, but associated effects due to microbial contamination or the ingestion of substances bound to particulate matter, do.

Aesthetic effects (appearance, taste, odour) of turbidity can be mitigated or removed by decantation or by filtration (or by both), accelerated, if necessary, by previous aeration

Date of sampling

Windhoek info@analab.com.ni Tel +264 61 210 13; Cell +264 81 611 884; 71 Newcastle Stree

Walvis Bay

walvisbaylab@analab.com.n Cell +264 81 122 158 Unit 16, Ben Amathila Ave

PO Box 86782, Windhoek, Namibia

TEST REPORT

To:	Digby Wells Environn	nental SA		
	48 Grosvenor Road		Date received:	15/Dec/21
	Bryanston		Date analysed:	14 Jan -8 Feb 2022
	2191		Date reported:	10/Feb/22
	South Africa			
Attn:	: Megan Edwards I: <u>megan.edwards@digbywells.com</u>		Client Reference no.:	AFT 7220
email:			Quotation no.:	QU-6835
Tel:	27117899495		Lab Reference:	1212234
			Enquiries: Ms N	lanuela Mayer
Sample deta	ails	Borehole samples		
Location of	sampling point	Uis, Afritin Mine		
Description	of sampling point	BH1-2		

7 Dec 2021, 19h00

Test item number	1212234/7						
				Re	commended	l maximum li	mits
				Hui	man consum	ption	Livestock
Parameter	Value	Units	Classification	Group A	Group B	Group C	watering
рН	7.5		А	6-9	5.5-9.5	4-11	
Electrical Conductivity	530	mS/m	D	150	300	400	
Turbidity	0.35	NTU	А	1	5	10	
Total Dissolved Solids (calc.)	3213	mg/l					6000
P-Alkalinity as CaCO ₃	0	mg/l					
Total Alkalinity as CaCO ₃	550	mg/l					
Total Hardness as CaCO ₃	1066	mg/l	С	300	650	1300	
Ca-Hardness as CaCO ₃	572	mg/l	С	375	500	1000	2500
Mg-Hardness as CaCO ₃	494	mg/l	С	290	420	840	2057
Chloride as Cl ⁻	1037	mg/l	С	250	600	1200	1500-3000
Fluoride as F	1.9	mg/l	В	1.5	2.0	3.0	2.0-6.0
Sulphate as SO ₄ ²⁻	531	mg/l	В	200	600	1200	1000
Nitrate as N	35	mg/l	С	10	20	40	100
Nitrite as N	0.01	mg/l					10
Ammonia as N	<0.02	mg/l					
Sodium as Na	778	mg/l	С	100	400	800	2000
Potassium as K	31	mg/l	А	200	400	800	
Magnesium as Mg	120	mg/l	С	70	100	200	500
Calcium as Ca	229	mg/l	С	150	200	400	1000
Manganese as Mn	0.01	mg/l	А	0.05	1.0	2.0	10
Iron as Fe	0.01	mg/l	А	0.1	1.0	2.0	10
Stability pH, at 25°C	6.5						
Langelier Index	1.1	scaling		>0=scaling, <0	=corrosive, 0=	stable	
Ryznar Index	5.4	scaling		<6.5=scaling,	>7,5=corrosive,	<u>></u> 6.5 and <u><</u> 7.5	=stable
Corrosivity ratio	3.7	increasing c	orrosive tendency	Applies to wat	er in the pH rar	nge 7-8	
				which also con	tains dissolved	oxygen	

ratios <0.2 no corrosive properties ratios >0.2 increasing corrosive tendency

This test report is only valid without any alterations and shall not be published or reproduced excep laboratory. Page 19 of 45

info@analab.com.ni Tel +264 61 210 13; Cell +264 81 611 884; 71 Newcastle Stree

Walvis Bay

walvisbaylab@analab.com.n Cell +264 81 122 158 Unit 16, Ben Amathila Ave

PO Box 86782, Windhoek, Namibia

Remark:

Overall classification of water, considering only constituents that have been tested for: Group D: high risk or water unsuitable for human consumption

Interpretation based on guidelines for the evaluation of drinking water for human consumption, DWA, Namibia, April 1988 and South African Water Quality Guidelines Volume 5: Agricultural water use: Livestock watering, Second Edition, 1996

For practical reasons, the guidelines are divided into four groups. The highest group assigned to any of the constituents determines the classification of the water as a whole. Group A: excellent quality water Group B: good quality water Group C: low risk water Group D: high risk or water unsuitable for human consumption

Ideally water should be either Group A or Group B. If water is classified as Group C, the situation is not yet critical, but attention should be given to those constituents over the Group B limit. If however, the water is classified as Group D urgent and immediate attention is required to reduce the levels of the problem constituents in the water to suitable levels.

Sample acceptance:

Walvis Bay

walvisbaylab@analab.com.n Cell +264 81 122 158 Unit 16, Ben Amathila Ave

PO Box 86782, Windhoek, Namibia

Assessment of water quality for human consumption

Naturally occurring chemicals that are of health significance in drinking water

Fluoride: Exposure to high levels of fluoride, which occurs naturally, can lead to mottling of teeth and, in severe cases, crippling skeletal fluorosis.

1.5-3.5 mg/l fluoride: the threshold for marked dental mottling with associated tooth damage due to softening of enamel is 1.5mg/L. Above this, mottling and tooth damage will probably be noticeable in most continuous users of the water. No other health effects occur.

Chemicals from agricultural activities that are of health significance in drinking water Nitrate and nitrite: In water it has been associated with methaemoglobinaemia, especially in bottle-fed infants >20 mg/l nitrate as N: methemoglobinaemia occurs in infants. Occurrence of mucous membrane irritation in adults

Some of the naturally occurring chemicals which occur in drinking water at concentrations below those at which toxic effects may occur.

Chloride: high concentrations of chloride give a salty taste to water. Concentrations in excess of 250 mg/l are increasingly likely to be detected by taste.

Hardness: Depending on the interaction of other factors, such as, pH and alkalinity, water with a hardness above approximately 200 mg/l may cause scale deposition in the pipe work and tanks. On heating, hard waters form deposits of calcium carbonate scale.

pH: Optimum pH 6.5-8.

pH does not exert direct health effects, but may exert indirect health effects via metal solubility.

Sodium: The average taste threshold for sodium is about 200 mg/l.

Sulphate: It is generally considered that the taste impairment is minimal at levels below 250 mg/l.

Magnesium: The average taste threshold for magnesium is about 70 mg/l

Total dissolved solids: The palatability of water with a TDS level of less than 600 mg/l is generally considered to be good; drinking water becomes significantly and increasingly unpalatable at TDS levels greater than about 1000 mg/l.

Turbidity is a measure of the light-scattering ability of water and is indicative of the concentration of suspended matter in water.

Microorganisms are often associated with turbidity, hence low turbidity minimises the potential for transmission of infectious diseases. Turbidity also affects the aesthetic quality of water.

Turbidity in water is caused by the presence of suspended matter which usually consists of a mixture of inorganic matter, such as clay and soil particles and organic matter.

Turbidity may also be associated with the presence of inorganic ions such as manganese(II) and iron(II).

The consumption of turbid water *per se* does not have any direct health effects, but associated effects due to microbial contamination or the ingestion of substances bound to particulate matter, do.

Aesthetic effects (appearance, taste, odour) of turbidity can be mitigated or removed by decantation or by filtration (or by both), accelerated, if necessary, by previous aeration

Date of sampling

Windhoek info@analab.com.ni Tel +264 61 210 13; Cell +264 81 611 884; 71 Newcastle Stree

Walvis Bay

walvisbaylab@analab.com.n Cell +264 81 122 158 Unit 16, Ben Amathila Ave

PO Box 86782, Windhoek, Namibia

TEST REPORT

To:	Digby Wells Environ	mental SA		
	48 Grosvenor Road		Date received:	15/Dec/21
	Bryanston		Date analysed:	14 Jan - 8 Feb 2022
	2191		Date reported:	10/Feb/22
	South Africa			
Attn:	: Megan Edwards I: <u>megan.edwards@digbywells.com</u>		Client Reference no.:	AFT 7220
email:			Quotation no.:	QU-6835
Tel:	27117899495		Lab Reference:	1212234
			Enquiries: Ms M	lanuela Mayer
Sample deta	ails	Borehole samples		
Location of	sampling point	Uis, Afritin Mine		
Description	of sampling point	BH1-3		

8 Dec 2021, 05h03

Test item number	1212234/8						
				Re	commended	l maximum li	mits
				Hui	man consum	ption	Livestock
Parameter	Value	Units	Classification	Group A	Group B	Group C	watering
рН	7.2		А	6-9	5.5-9.5	4-11	
Electrical Conductivity	532	mS/m	D	150	300	400	
Turbidity	0.95	NTU	А	1	5	10	
Total Dissolved Solids (calc.)	3210	mg/l					6000
P-Alkalinity as CaCO₃	0	mg/l					
Total Alkalinity as CaCO ₃	545	mg/l					
Total Hardness as CaCO ₃	1073	mg/l	С	300	650	1300	
Ca-Hardness as CaCO ₃	574	mg/l	С	375	500	1000	2500
Mg-Hardness as CaCO ₃	498	mg/l	С	290	420	840	2057
Chloride as Cl ⁻	1037	mg/l	С	250	600	1200	1500-3000
Fluoride as F ⁻	1.9	mg/l	В	1.5	2.0	3.0	2.0-6.0
Sulphate as SO ₄ ²⁻	550	mg/l	В	200	600	1200	1000
Nitrate as N	34	mg/l	С	10	20	40	100
Nitrite as N	0.02	mg/l					10
Ammonia as N	<0.02	mg/l					
Sodium as Na	761	mg/l	С	100	400	800	2000
Potassium as K	31	mg/l	А	200	400	800	
Magnesium as Mg	121	mg/l	С	70	100	200	500
Calcium as Ca	230	mg/l	С	150	200	400	1000
Manganese as Mn	0.01	mg/l	А	0.05	1.0	2.0	10
Iron as Fe	<0.01	mg/l	А	0.1	1.0	2.0	10
Stability pH, at 25°C	6.5						
Langelier Index	0.7	scaling		>0=scaling, <0	=corrosive, 0=	stable	
Ryznar Index	5.7	scaling		<6.5=scaling,	>7,5=corrosive,	<u>></u> 6.5 and <u><</u> 7.5	=stable
Corrosivity ratio	3.7	increasing c	orrosive tendency	Applies to wat	er in the pH rar	nge 7-8	
				which also con	tains dissolved	oxygen	

ratios <0.2 no corrosive properties ratios >0.2 increasing corrosive tendency

This test report is only valid without any alterations and shall not be published or reproduced excep laboratory. Page 22 of 45

info@analab.com.ni Tel +264 61 210 13; Cell +264 81 611 884; 71 Newcastle Stree

Walvis Bay

walvisbaylab@analab.com.n Cell +264 81 122 158 Unit 16, Ben Amathila Ave

PO Box 86782, Windhoek, Namibia

Remark:

Overall classification of water, considering only constituents that have been tested for: Group D: high risk or water unsuitable for human consumption

Interpretation based on guidelines for the evaluation of drinking water for human consumption, DWA, Namibia, April 1988 and South African Water Quality Guidelines Volume 5: Agricultural water use: Livestock watering, Second Edition, 1996

For practical reasons, the guidelines are divided into four groups. The highest group assigned to any of the constituents determines the classification of the water as a whole. Group A: excellent quality water Group B: good quality water Group C: low risk water Group D: high risk or water unsuitable for human consumption

Ideally water should be either Group A or Group B. If water is classified as Group C, the situation is not yet critical, but attention should be given to those constituents over the Group B limit. If however, the water is classified as Group D urgent and immediate attention is required to reduce the levels of the problem constituents in the water to suitable levels.

Sample acceptance:

Walvis Bay

walvisbaylab@analab.com.n Cell +264 81 122 158 Unit 16, Ben Amathila Ave

PO Box 86782, Windhoek, Namibia

Assessment of water quality for human consumption

Naturally occurring chemicals that are of health significance in drinking water

Fluoride: Exposure to high levels of fluoride, which occurs naturally, can lead to mottling of teeth and, in severe cases, crippling skeletal fluorosis.

1.5-3.5 mg/l fluoride: the threshold for marked dental mottling with associated tooth damage due to softening of enamel is 1.5mg/L. Above this, mottling and tooth damage will probably be noticeable in most continuous users of the water. No other health effects occur.

Chemicals from agricultural activities that are of health significance in drinking water Nitrate and nitrite: In water it has been associated with methaemoglobinaemia, especially in bottle-fed infants >20 mg/l nitrate as N: methemoglobinaemia occurs in infants. Occurrence of mucous membrane irritation in adults

Chloride: high concentrations of chloride give a salty taste to water. Concentrations in excess of 250 mg/l are increasingly likely to be detected by taste.

Hardness: Depending on the interaction of other factors, such as, pH and alkalinity, water with a hardness above approximately 200 mg/l may cause scale deposition in the pipe work and tanks. On heating, hard waters form deposits of calcium carbonate scale.

pH: Optimum pH 6.5-8.

pH does not exert direct health effects, but may exert indirect health effects via metal solubility.

Sodium: The average taste threshold for sodium is about 200 mg/l.

Sulphate: It is generally considered that the taste impairment is minimal at levels below 250 mg/l.

Magnesium: The average taste threshold for magnesium is about 70 mg/l

Total dissolved solids: The palatability of water with a TDS level of less than 600 mg/l is generally considered to be good; drinking water becomes significantly and increasingly unpalatable at TDS levels greater than about 1000 mg/l.

Turbidity is a measure of the light-scattering ability of water and is indicative of the concentration of suspended matter in water.

Microorganisms are often associated with turbidity, hence low turbidity minimises the potential for transmission of infectious diseases. Turbidity also affects the aesthetic quality of water.

Turbidity in water is caused by the presence of suspended matter which usually consists of a mixture of inorganic matter, such as clay and soil particles and organic matter.

Turbidity may also be associated with the presence of inorganic ions such as manganese(II) and iron(II).

The consumption of turbid water *per se* does not have any direct health effects, but associated effects due to microbial contamination or the ingestion of substances bound to particulate matter, do.

Aesthetic effects (appearance, taste, odour) of turbidity can be mitigated or removed by decantation or by filtration (or by both), accelerated, if necessary, by previous aeration

Date of sampling

Windhoek info@analab.com.ni Tel +264 61 210 13; Cell +264 81 611 884; 71 Newcastle Stree

Walvis Bay

walvisbaylab@analab.com.n Cell +264 81 122 158 Unit 16, Ben Amathila Ave

PO Box 86782, Windhoek, Namibia

TEST REPORT

To:	Digby Wells Enviro	nmental SA		
	48 Grosvenor Road		Date received:	15/Dec/21
	Bryanston		Date analysed:	14 Jan - 8 Feb 2022
	2191		Date reported:	10/Feb/22
South Africa				
Attn:	Megan Edwards		Client Reference no.:	AFT 7220
email:	mail: megan.edwards@digbywells.com		Quotation no.:	QU-6835
Tel:	27117899495		Lab Reference:	I212234
			Enquiries: Ms M	lanuela Mayer
Sample deta	ails	Borehole samples		
Location of	sampling point	Uis, Afritin Mine		
Description	of sampling point	BH1-4		

8 Dec 2021, 15h01

Test item number	1212234/9						
				Re	commended	maximum li	mits
				Hui	man consum	ption	Livestock
Parameter	Value	Units	Classification	Group A	Group B	Group C	watering
рН	7.1		А	6-9	5.5-9.5	4-11	
Electrical Conductivity	531	mS/m	D	150	300	400	
Turbidity	0.29	NTU	А	1	5	10	
Total Dissolved Solids (calc.)	3181	mg/l					6000
P-Alkalinity as CaCO ₃	0	mg/l					
Total Alkalinity as CaCO ₃	550	mg/l					
Total Hardness as CaCO ₃	1055	mg/l	С	300	650	1300	
Ca-Hardness as CaCO ₃	569	mg/l	С	375	500	1000	2500
Mg-Hardness as CaCO ₃	486	mg/l	С	290	420	840	2057
Chloride as Cl ⁻	991	mg/l	С	250	600	1200	1500-3000
Fluoride as F	2.0	mg/l	В	1.5	2.0	3.0	2.0-6.0
Sulphate as SO ₄ ²⁻	528	mg/l	В	200	600	1200	1000
Nitrate as N	40	mg/l	D	10	20	40	100
Nitrite as N	0.02	mg/l					10
Ammonia as N	<0.02	mg/l					
Sodium as Na	776	mg/l	С	100	400	800	2000
Potassium as K	30	mg/l	А	200	400	800	
Magnesium as Mg	118	mg/l	С	70	100	200	500
Calcium as Ca	228	mg/l	С	150	200	400	1000
Manganese as Mn	0.01	mg/l	А	0.05	1.0	2.0	10
Iron as Fe	0.01	mg/l	А	0.1	1.0	2.0	10
Stability pH, at 25°C	6.5						
Langelier Index	0.6	scaling		>0=scaling, <0	=corrosive, 0=s	stable	
Ryznar Index	5.8	scaling		<6.5=scaling,	>7,5=corrosive,	<u>></u> 6.5 and <u><</u> 7.5	=stable
Corrosivity ratio	3.5	increasing co	orrosive tendency	Applies to wat	er in the pH rar	nge 7-8	
				which also con	tains dissolved	oxygen	

Slighener

ratios <0.2 no corrosive properties ratios >0.2 increasing corrosive tendency

This test report is only valid without any alterations and shall not be published or reproduced excep laboratory. Page 25 of 45

info@analab.com.ni Tel +264 61 210 13; Cell +264 81 611 884; 71 Newcastle Stree

Walvis Bay

walvisbaylab@analab.com.n Cell +264 81 122 158 Unit 16, Ben Amathila Ave

PO Box 86782, Windhoek, Namibia

Remark:

Overall classification of water, considering only constituents that have been tested for: Group D: high risk or water unsuitable for human consumption

Interpretation based on guidelines for the evaluation of drinking water for human consumption, DWA, Namibia, April 1988 and South African Water Quality Guidelines Volume 5: Agricultural water use: Livestock watering, Second Edition, 1996

For practical reasons, the guidelines are divided into four groups. The highest group assigned to any of the constituents determines the classification of the water as a whole. Group A: excellent quality water Group B: good quality water Group C: low risk water Group D: high risk or water unsuitable for human consumption

Ideally water should be either Group A or Group B. If water is classified as Group C, the situation is not yet critical, but attention should be given to those constituents over the Group B limit. If however, the water is classified as Group D urgent and immediate attention is required to reduce the levels of the problem constituents in the water to suitable levels.

Sample acceptance:

Walvis Bay

walvisbaylab@analab.com.n Cell +264 81 122 158 Unit 16, Ben Amathila Ave

PO Box 86782, Windhoek, Namibia

Assessment of water quality for human consumption

Naturally occurring chemicals that are of health significance in drinking water

Fluoride: Exposure to high levels of fluoride, which occurs naturally, can lead to mottling of teeth and, in severe cases, crippling skeletal fluorosis.

3.5-4.0 mg/l fluoride: severe tooth damage especially in infants' temporary and permanent teeth; softening of the enamel and dentine will occur on continuous use of water. Threshold for chronic effects of fluoride exposure.

Chemicals from agricultural activities that are of health significance in drinking water

Nitrate and nitrite: In water it has been associated with methaemoglobinaemia, especially in bottle-fed infants >20 mg/l nitrate as N: methemoglobinaemia occurs in infants. Occurrence of mucous membrane irritation in adults

Some of the naturally occurring chemicals which occur in drinking water at concentrations below those at which toxic effects may occur.

Chloride: high concentrations of chloride give a salty taste to water. Concentrations in excess of 250 mg/l are increasingly likely to be detected by taste.

Hardness: Depending on the interaction of other factors, such as, pH and alkalinity, water with a hardness above approximately 200 mg/l may cause scale deposition in the pipe work and tanks. On heating, hard waters form deposits of calcium carbonate scale.

pH: Optimum pH 6.5-8.

pH does not exert direct health effects, but may exert indirect health effects via metal solubility.

Sodium: The average taste threshold for sodium is about 200 mg/l.

Sulphate: It is generally considered that the taste impairment is minimal at levels below 250 mg/l.

Magnesium: The average taste threshold for magnesium is about 70 mg/l

Total dissolved solids: The palatability of water with a TDS level of less than 600 mg/l is generally considered to be good; drinking water becomes significantly and increasingly unpalatable at TDS levels greater than about 1000 mg/l.

Turbidity is a measure of the light-scattering ability of water and is indicative of the concentration of suspended matter in water.

Microorganisms are often associated with turbidity, hence low turbidity minimises the potential for transmission of infectious diseases. Turbidity also affects the aesthetic quality of water.

Turbidity in water is caused by the presence of suspended matter which usually consists of a mixture of inorganic matter, such as clay and soil particles and organic matter.

Turbidity may also be associated with the presence of inorganic ions such as manganese(II) and iron(II).

The consumption of turbid water *per se* does not have any direct health effects, but associated effects due to microbial contamination or the ingestion of substances bound to particulate matter, do.

Aesthetic effects (appearance, taste, odour) of turbidity can be mitigated or removed by decantation or by filtration (or by both), accelerated, if necessary, by previous aeration

Date of sampling

Windhoek info@analab.com.ni Tel +264 61 210 13; Cell +264 81 611 884; 71 Newcastle Stree

Walvis Bay

walvisbaylab@analab.com.n Cell +264 81 122 158 Unit 16, Ben Amathila Ave

PO Box 86782, Windhoek, Namibia

TEST REPORT

To:	Digby Wells Environ	mental SA			
	48 Grosvenor Road		Date received:	15/Dec/21	
	Bryanston		Date analysed:	14 Jan -8 Feb 2022	
	2191		Date reported:	10/Feb/22	
	South Africa				
Attn:	: Megan Edwards l: <u>megan.edwards@digbywells.com</u>		Client Reference no.:	AFT 7220	
email:			Quotation no.:	QU-6835	
Tel:	27117899495		Lab Reference:	1212234	
			Enquiries: Ms M	lanuela Mayer	
Sample deta	ails	Borehole samples			
Location of	sampling point	Uis, Afritin Mine			
Description	of sampling point	BH1-6			

9 Dec 2021, 13h55

Test item number	I212234/10						
				Re	commended	maximum li	mits
				Hur	man consum	ption	Livestock
Parameter	Value	Units	Classification	Group A	Group B	Group C	watering
рН	7.1		А	6-9	5.5-9.5	4-11	
Electrical Conductivity	536	mS/m	D	150	300	400	
Turbidity	0.62	NTU	А	1	5	10	
Total Dissolved Solids (calc.)	3190	mg/l					6000
P-Alkalinity as CaCO ₃	0	mg/l					
Total Alkalinity as CaCO ₃	550	mg/l					
Total Hardness as CaCO ₃	997	mg/l	С	300	650	1300	
Ca-Hardness as CaCO ₃	494	mg/l	В	375	500	1000	2500
Mg-Hardness as CaCO ₃	502	mg/l	С	290	420	840	2057
Chloride as Cl ⁻	1037	mg/l	С	250	600	1200	1500-3000
Fluoride as F ⁻	1.9	mg/l	В	1.5	2.0	3.0	2.0-6.0
Sulphate as SO ₄ ²⁻	534	mg/l	В	200	600	1200	1000
Nitrate as N	33	mg/l	С	10	20	40	100
Nitrite as N	<0.01	mg/l					10
Ammonia as N	0.02	mg/l					
Sodium as Na	791	mg/l	С	100	400	800	2000
Potassium as K	31	mg/l	А	200	400	800	
Magnesium as Mg	122	mg/l	С	70	100	200	500
Calcium as Ca	198	mg/l	В	150	200	400	1000
Manganese as Mn	0.01	mg/l	А	0.05	1.0	2.0	10
Iron as Fe	0.01	mg/l	А	0.1	1.0	2.0	10
Stability pH, at 25°C	6.5						
Langelier Index	0.6	scaling		>0=scaling, <0	=corrosive, 0=	stable	
Ryznar Index	6.0	scaling		<6.5=scaling, >	>7,5=corrosive,	<u>></u> 6.5 and <u><</u> 7.5	=stable
Corrosivity ratio	3.7	increasing c	orrosive tendency	Applies to wat	er in the pH rar	nge 7-8	
				which also con	tains dissolved	oxygen	

ratios <0.2 no corrosive properties ratios >0.2 increasing corrosive tendency

This test report is only valid without any alterations and shall not be published or reproduced excep laboratory. Page 28 of 45
Windhoek

info@analab.com.ni Tel +264 61 210 13; Cell +264 81 611 884; 71 Newcastle Stree

Walvis Bay

walvisbaylab@analab.com.n Cell +264 81 122 158 Unit 16, Ben Amathila Ave

PO Box 86782, Windhoek, Namibia

Remark:

Overall classification of water, considering only constituents that have been tested for: Group D: high risk or water unsuitable for human consumption

Interpretation based on guidelines for the evaluation of drinking water for human consumption, DWA, Namibia, April 1988 and South African Water Quality Guidelines Volume 5: Agricultural water use: Livestock watering, Second Edition, 1996

For practical reasons, the guidelines are divided into four groups. The highest group assigned to any of the constituents determines the classification of the water as a whole. Group A: excellent quality water Group B: good quality water Group C: low risk water Group D: high risk or water unsuitable for human consumption

Ideally water should be either Group A or Group B. If water is classified as Group C, the situation is not yet critical, but attention should be given to those constituents over the Group B limit. If however, the water is classified as Group D urgent and immediate attention is required to reduce the levels of the problem constituents in the water to suitable levels.

Sample acceptance:

Sample was collected in clients' own bottle / in bottles provided by the laboratory. Sample was suitable for testing

Walvis Bay

walvisbaylab@analab.com.n Cell +264 81 122 158 Unit 16, Ben Amathila Ave

PO Box 86782, Windhoek, Namibia

Assessment of water quality for human consumption

Naturally occurring chemicals that are of health significance in drinking water

Fluoride: Exposure to high levels of fluoride, which occurs naturally, can lead to mottling of teeth and, in severe cases, crippling skeletal fluorosis.

1.5-3.5 mg/l fluoride: the threshold for marked dental mottling with associated tooth damage due to softening of enamel is 1.5mg/L. Above this, mottling and tooth damage will probably be noticeable in most continuous users of the water. No other health effects occur.

Chemicals from agricultural activities that are of health significance in drinking water Nitrate and nitrite: In water it has been associated with methaemoglobinaemia, especially in bottle-fed infants >20 mg/l nitrate as N: methemoglobinaemia occurs in infants. Occurrence of mucous membrane irritation in adults

Some of the naturally occurring chemicals which occur in drinking water at concentrations below those at which toxic effects may occur.

Chloride: high concentrations of chloride give a salty taste to water. Concentrations in excess of 250 mg/l are increasingly likely to be detected by taste.

Hardness: Depending on the interaction of other factors, such as, pH and alkalinity, water with a hardness above approximately 200 mg/l may cause scale deposition in the pipe work and tanks. On heating, hard waters form deposits of calcium carbonate scale.

pH: Optimum pH 6.5-8.

pH does not exert direct health effects, but may exert indirect health effects via metal solubility.

Sodium: The average taste threshold for sodium is about 200 mg/l.

Sulphate: It is generally considered that the taste impairment is minimal at levels below 250 mg/l.

Magnesium: The average taste threshold for magnesium is about 70 mg/l

Total dissolved solids: The palatability of water with a TDS level of less than 600 mg/l is generally considered to be good; drinking water becomes significantly and increasingly unpalatable at TDS levels greater than about 1000 mg/l.

Turbidity is a measure of the light-scattering ability of water and is indicative of the concentration of suspended matter in water.

Microorganisms are often associated with turbidity, hence low turbidity minimises the potential for transmission of infectious diseases. Turbidity also affects the aesthetic quality of water.

Turbidity in water is caused by the presence of suspended matter which usually consists of a mixture of inorganic matter, such as clay and soil particles and organic matter.

Turbidity may also be associated with the presence of inorganic ions such as manganese(II) and iron(II).

The consumption of turbid water *per se* does not have any direct health effects, but associated effects due to microbial contamination or the ingestion of substances bound to particulate matter, do.

Aesthetic effects (appearance, taste, odour) of turbidity can be mitigated or removed by decantation or by filtration (or by both), accelerated, if necessary, by previous aeration

Analytical Laboratory Services

Date of sampling

Windhoek info@analab.com.ni Tel +264 61 210 13; Cell +264 81 611 884; 71 Newcastle Stree

Walvis Bay

walvisbaylab@analab.com.n Cell +264 81 122 158 Unit 16, Ben Amathila Ave

PO Box 86782, Windhoek, Namibia

TEST REPORT

To:	Digby Wells Enviror	nmental SA				
	48 Grosvenor Road		Date received:	15/Dec/21		
	Bryanston		Date analysed:	14 Jan - 8 Feb 2022		
	2191		Date reported: 10/Feb/22			
	South Africa					
Attn:	Megan Edwards		Client Reference no.:	AFT 7220		
email:	megan.edwards@dig	<u>gbywells.com</u>	Quotation no.:	QU-6835		
Tel:	27117899495		Lab Reference:	1212234		
			Enquiries: Ms M	lanuela Mayer		
Sample deta	nils	Borehole samples				
Location of sampling point		Uis, Afritin Mine				
Description	of sampling point	BH10-1				

13 Dec 2021, 11h00

Test item number	I212234/11						
				Re	commended	maximum li	mits
				Hur	nan consum	ption	Livestock
Parameter	Value	Units	Classification	Group A	Group B	Group C	watering
рH	7.0		А	6-9	5.5-9.5	4-11	
Electrical Conductivity	658	mS/m	D	150	300	400	
Turbidity	0.50	NTU	А	1	5	10	
Total Dissolved Solids (calc.)	4100	mg/l					6000
P-Alkalinity as CaCO ₃	0	mg/l					
Total Alkalinity as CaCO ₃	410	mg/l					
Total Hardness as CaCO ₃	1666	mg/l	D	300	650	1300	
Ca-Hardness as CaCO ₃	941	mg/l	С	375	500	1000	2500
Mg-Hardness as CaCO ₃	725	mg/l	С	290	420	840	2057
Chloride as Cl ⁻	1383	mg/l	D	250	600	1200	1500-3000
Fluoride as F	1.5	mg/l	В	1.5	2.0	3.0	2.0-6.0
Sulphate as SO ₄ ²⁻	948	mg/l	С	200	600	1200	1000
Nitrate as N	23	mg/l	С	10	20	40	100
Nitrite as N	<0.01	mg/l					10
Ammonia as N	<0.02	mg/l					
Sodium as Na	832	mg/l	D	100	400	800	2000
Potassium as K	34	mg/l	А	200	400	800	
Magnesium as Mg	176	mg/l	С	70	100	200	500
Calcium as Ca	377	mg/l	С	150	200	400	1000
Manganese as Mn	<0.01	mg/l	А	0.05	1.0	2.0	10
Iron as Fe	<0.01	mg/l	А	0.1	1.0	2.0	10
Stability pH, at 25°C	6.4						
Langelier Index	0.7	scaling		>0=scaling, <0	=corrosive, 0=s	stable	
Ryznar Index	5.7	scaling		<6.5=scaling, >	7,5=corrosive,	<u>></u> 6.5 and <u><</u> 7.5	=stable
Corrosivity ratio	7.2	increasing co	orrosive tendency	Applies to wat	er in the pH rar	ıge 7-8	
				which also con	tains dissolved	oxygen	

ratios <0.2 no corrosive properties ratios >0.2 increasing corrosive tendency

This test report is only valid without any alterations and shall not be published or reproduced excep laboratory. Page 31 of 45

Approved Technical Signatory Ms S. Rügheimer

Windhoek

info@analab.com.ni Tel +264 61 210 13; Cell +264 81 611 884; 71 Newcastle Stree

Walvis Bay

walvisbaylab@analab.com.n Cell +264 81 122 158 Unit 16, Ben Amathila Ave

PO Box 86782, Windhoek, Namibia

Remark:

Overall classification of water, considering only constituents that have been tested for: Group D: high risk or water unsuitable for human consumption

Interpretation based on guidelines for the evaluation of drinking water for human consumption, DWA, Namibia, April 1988 and South African Water Quality Guidelines Volume 5: Agricultural water use: Livestock watering, Second Edition, 1996

For practical reasons, the guidelines are divided into four groups. The highest group assigned to any of the constituents determines the classification of the water as a whole. Group A: excellent quality water Group B: good quality water Group C: low risk water Group D: high risk or water unsuitable for human consumption

Ideally water should be either Group A or Group B. If water is classified as Group C, the situation is not yet critical, but attention should be given to those constituents over the Group B limit. If however, the water is classified as Group D urgent and immediate attention is required to reduce the levels of the problem constituents in the water to suitable levels.

Sample acceptance:

Sample was collected in clients' own bottle / in bottles provided by the laboratory. Sample was suitable for testing

Walvis Bay

walvisbaylab@analab.com.n Cell +264 81 122 158 Unit 16, Ben Amathila Ave

PO Box 86782, Windhoek, Namibia

Assessment of water quality for human consumption

Naturally occurring chemicals that are of health significance in drinking water

Fluoride: Exposure to high levels of fluoride, which occurs naturally, can lead to mottling of teeth and, in severe cases, crippling skeletal fluorosis.

1.0-1.5 mg/l fluoride: slight mottling of dental enamel may occur in sensitive individuals. No other health effects are expected

Chemicals from agricultural activities that are of health significance in drinking water

Nitrate and nitrite: In water it has been associated with methaemoglobinaemia, especially in bottle-fed infants >20 mg/l nitrate as N: methemoglobinaemia occurs in infants. Occurrence of mucous membrane irritation in adults

Some of the naturally occurring chemicals which occur in drinking water at concentrations below those at which toxic effects may occur.

Chloride: high concentrations of chloride give a salty taste to water. Concentrations in excess of 250 mg/l are increasingly likely to be detected by taste.

Hardness: Depending on the interaction of other factors, such as, pH and alkalinity, water with a hardness above approximately 200 mg/l may cause scale deposition in the pipe work and tanks. On heating, hard waters form deposits of calcium carbonate scale.

pH: Optimum pH 6.5-8.

pH does not exert direct health effects, but may exert indirect health effects via metal solubility.

Sodium: The average taste threshold for sodium is about 200 mg/l.

Sulphate: It is generally considered that the taste impairment is minimal at levels below 250 mg/l.

Magnesium: The average taste threshold for magnesium is about 70 mg/l

Total dissolved solids: The palatability of water with a TDS level of less than 600 mg/l is generally considered to be good; drinking water becomes significantly and increasingly unpalatable at TDS levels greater than about 1000 mg/l.

Turbidity is a measure of the light-scattering ability of water and is indicative of the concentration of suspended matter in water.

Microorganisms are often associated with turbidity, hence low turbidity minimises the potential for transmission of infectious diseases. Turbidity also affects the aesthetic quality of water.

Turbidity in water is caused by the presence of suspended matter which usually consists of a mixture of inorganic matter, such as clay and soil particles and organic matter.

Turbidity may also be associated with the presence of inorganic ions such as manganese(II) and iron(II).

The consumption of turbid water *per se* does not have any direct health effects, but associated effects due to microbial contamination or the ingestion of substances bound to particulate matter, do.

Aesthetic effects (appearance, taste, odour) of turbidity can be mitigated or removed by decantation or by filtration (or by both), accelerated, if necessary, by previous aeration

Analytical Laboratory Services

Date of sampling

Windhoek info@analab.com.ni Tel +264 61 210 13; Cell +264 81 611 884; 71 Newcastle Stree

Walvis Bay

walvisbaylab@analab.com.n Cell +264 81 122 158 Unit 16, Ben Amathila Ave

PO Box 86782, Windhoek, Namibia

TEST REPORT

To: D i	igby Wells Enviro	nmental SA			
48	Grosvenor Road		Date received:	15/Dec/21	
Br	yanston		Date analysed:	14 Jan - 8 Feb 2022	
21	91		Date reported:	10/Feb/22	
Sc	outh Africa				
Attn: Me	egan Edwards		Client Reference no.:	AFT 7220	
email: <u>m</u>	<u>egan.edwards@di</u>	<u>gbywells.com</u>	Quotation no.:	QU-6835	
Tel: 27	117899495		Lab Reference:	1212234	
			Enquiries: Ms M	lanuela Mayer	
Sample details		Borehole samples			
Location of sampling point		Uis, Afritin Mine			
Description of	sampling point	BH10-2			

13 Dec 2021, 19h00

Test item number	1212234/12						
				Re	commended	l maximum li	mits
				Hu	man consum	ption	Livestock
Parameter	Value	Units	Classification	Group A	Group B	Group C	watering
рН	7.0		А	6-9	5.5-9.5	4-11	
Electrical Conductivity	664	mS/m	D	150	300	400	
Turbidity	0.70	NTU	А	1	5	10	
Total Dissolved Solids (calc.)	4164	mg/l					6000
P-Alkalinity as CaCO ₃	0	mg/l					
Total Alkalinity as CaCO ₃	420	mg/l					
Total Hardness as CaCO₃	1655	mg/l	D	300	650	1300	
Ca-Hardness as CaCO ₃	939	mg/l	С	375	500	1000	2500
Mg-Hardness as CaCO ₃	717	mg/l	С	290	420	840	2057
Chloride as Cl ⁻	1360	mg/l	D	250	600	1200	1500-3000
Fluoride as F ⁻	1.6	mg/l	В	1.5	2.0	3.0	2.0-6.0
Sulphate as SO ₄ ²⁻	981	mg/l	С	200	600	1200	1000
Nitrate as N	27	mg/l	С	10	20	40	100
Nitrite as N	<0.01	mg/l					10
Ammonia as N	<0.02	mg/l					
Sodium as Na	866	mg/l	D	100	400	800	2000
Potassium as K	33	mg/l	А	200	400	800	
Magnesium as Mg	174	mg/l	С	70	100	200	500
Calcium as Ca	376	mg/l	С	150	200	400	1000
Manganese as Mn	<0.01	mg/l	А	0.05	1.0	2.0	10
Iron as Fe	0.01	mg/l	А	0.1	1.0	2.0	10
Stability pH, at 25°C	6.4						
Langelier Index	0.6	scaling		>0=scaling, <0	=corrosive, 0=	stable	
Ryznar Index	5.8	scaling		<6.5=scaling,	>7,5=corrosive,	<u>></u> 6.5 and <u><</u> 7.5	=stable
Corrosivity ratio	7.0	increasing co	orrosive tendency	Applies to wat	er in the pH rar	nge 7-8	
				which also cor	tains dissolved	oxygen	

ratios <0.2 no corrosive properties ratios >0.2 increasing corrosive tendency

This test report is only valid without any alterations and shall not be published or reproduced excep laboratory. Page 34 of 45

Approved Technical Signatory Ms S. Rügheimer

Windhoek

info@analab.com.ni Tel +264 61 210 13; Cell +264 81 611 884; 71 Newcastle Stree

Walvis Bay

walvisbaylab@analab.com.n Cell +264 81 122 158 Unit 16, Ben Amathila Ave

PO Box 86782, Windhoek, Namibia

Remark:

Overall classification of water, considering only constituents that have been tested for: Group D: high risk or water unsuitable for human consumption

Interpretation based on guidelines for the evaluation of drinking water for human consumption, DWA, Namibia, April 1988 and South African Water Quality Guidelines Volume 5: Agricultural water use: Livestock watering, Second Edition, 1996

For practical reasons, the guidelines are divided into four groups. The highest group assigned to any of the constituents determines the classification of the water as a whole. Group A: excellent quality water Group B: good quality water Group C: low risk water Group D: high risk or water unsuitable for human consumption

Ideally water should be either Group A or Group B. If water is classified as Group C, the situation is not yet critical, but attention should be given to those constituents over the Group B limit. If however, the water is classified as Group D urgent and immediate attention is required to reduce the levels of the problem constituents in the water to suitable levels.

Sample acceptance:

Sample was collected in clients' own bottle / in bottles provided by the laboratory. Sample was suitable for testing

Walvis Bay

walvisbaylab@analab.com.n Cell +264 81 122 158 Unit 16, Ben Amathila Ave

PO Box 86782, Windhoek, Namibia

Assessment of water quality for human consumption

Naturally occurring chemicals that are of health significance in drinking water

Fluoride: Exposure to high levels of fluoride, which occurs naturally, can lead to mottling of teeth and, in severe cases, crippling skeletal fluorosis.

1.5-3.5 mg/l fluoride: the threshold for marked dental mottling with associated tooth damage due to softening of enamel is 1.5mg/L. Above this, mottling and tooth damage will probably be noticeable in most continuous users of the water. No other health effects occur.

Chemicals from agricultural activities that are of health significance in drinking water Nitrate and nitrite: In water it has been associated with methaemoglobinaemia, especially in bottle-fed infants >20 mg/l nitrate as N: methemoglobinaemia occurs in infants. Occurrence of mucous membrane irritation in adults

Some of the naturally occurring chemicals which occur in drinking water at concentrations below those at which toxic effects may occur.

Chloride: high concentrations of chloride give a salty taste to water. Concentrations in excess of 250 mg/l are increasingly likely to be detected by taste.

Hardness: Depending on the interaction of other factors, such as, pH and alkalinity, water with a hardness above approximately 200 mg/l may cause scale deposition in the pipe work and tanks. On heating, hard waters form deposits of calcium carbonate scale.

pH: Optimum pH 6.5-8.

pH does not exert direct health effects, but may exert indirect health effects via metal solubility.

Sodium: The average taste threshold for sodium is about 200 mg/l.

Sulphate: It is generally considered that the taste impairment is minimal at levels below 250 mg/l.

Magnesium: The average taste threshold for magnesium is about 70 mg/l

Total dissolved solids: The palatability of water with a TDS level of less than 600 mg/l is generally considered to be good; drinking water becomes significantly and increasingly unpalatable at TDS levels greater than about 1000 mg/l.

Turbidity is a measure of the light-scattering ability of water and is indicative of the concentration of suspended matter in water.

Microorganisms are often associated with turbidity, hence low turbidity minimises the potential for transmission of infectious diseases. Turbidity also affects the aesthetic quality of water.

Turbidity in water is caused by the presence of suspended matter which usually consists of a mixture of inorganic matter, such as clay and soil particles and organic matter.

Turbidity may also be associated with the presence of inorganic ions such as manganese(II) and iron(II).

The consumption of turbid water *per se* does not have any direct health effects, but associated effects due to microbial contamination or the ingestion of substances bound to particulate matter, do.

Aesthetic effects (appearance, taste, odour) of turbidity can be mitigated or removed by decantation or by filtration (or by both), accelerated, if necessary, by previous aeration

Analytical Laboratory Services

Date of sampling

Windhoek info@analab.com.ni Tel +264 61 210 13; Cell +264 81 611 884; 71 Newcastle Stree

Walvis Bay

walvisbaylab@analab.com.n Cell +264 81 122 158 Unit 16, Ben Amathila Ave

PO Box 86782, Windhoek, Namibia

TEST REPORT

To:	Digby Wells Enviro	nmental SA		
	48 Grosvenor Road		Date received:	15/Dec/21
	Bryanston		Date analysed:	14 Jan -8 Feb 2022
	2191		Date reported:	10/Feb/22
	South Africa			
Attn: Megan Edwards			Client Reference no.:	AFT 7220
email:	megan.edwards@dig	<u>gbywells.com</u>	Quotation no.:	QU-6835
Tel:	27117899495		Lab Reference:	1212234
			Enquiries: Ms M	lanuela Mayer
Sample deta	ails	Borehole samples		
Location of sampling point		Uis, Afritin Mine		
Description	of sampling point	BH10-3		

14 Dec 2021, 05h00

Test item number	1212234/13						
				Re	ecommended	l maximum li	mits
				Hu	man consum	ption	Livestock
Parameter	Value	Units	Classification	Group A	Group B	Group C	watering
рH	7.1		А	6-9	5.5-9.5	4-11	
Electrical Conductivity	668	mS/m	D	150	300	400	
Turbidity	0.75	NTU	А	1	5	10	
Total Dissolved Solids (calc.)	4164	mg/l					6000
P-Alkalinity as CaCO ₃	0	mg/l					
Total Alkalinity as CaCO ₃	420	mg/l					
Total Hardness as CaCO₃	1634	mg/l	D	300	650	1300	
Ca-Hardness as CaCO ₃	901	mg/l	С	375	500	1000	2500
Mg-Hardness as CaCO ₃	733	mg/l	С	290	420	840	2057
Chloride as Cl ⁻	1383	mg/l	D	250	600	1200	1500-3000
Fluoride as F ⁻	1.6	mg/l	В	1.5	2.0	3.0	2.0-6.0
Sulphate as SO ₄ ²⁻	964	mg/l	С	200	600	1200	1000
Nitrate as N	26	mg/l	С	10	20	40	100
Nitrite as N	<0.01	mg/l					10
Ammonia as N	<0.02	mg/l					
Sodium as Na	874	mg/l	D	100	400	800	2000
Potassium as K	34	mg/l	А	200	400	800	
Magnesium as Mg	178	mg/l	С	70	100	200	500
Calcium as Ca	361	mg/l	С	150	200	400	1000
Manganese as Mn	<0.01	mg/l	А	0.05	1.0	2.0	10
Iron as Fe	0.01	mg/l	А	0.1	1.0	2.0	10
Stability pH, at 25°C	6.4						
Langelier Index	0.7	scaling		>0=scaling, <0)=corrosive, 0=	stable	
Ryznar Index	5.7	scaling		<6.5=scaling,	>7,5=corrosive,	<u>></u> 6.5 and <u><</u> 7.5	=stable
Corrosivity ratio	7.0	increasing co	orrosive tendency	Applies to wat	ter in the pH rar	nge 7-8	
				which also cor	ntains dissolved	oxygen	

ratios <0.2 no corrosive properties ratios >0.2 increasing corrosive tendency

This test report is only valid without any alterations and shall not be published or reproduced excep laboratory. Page 37 of 45

Approved Technical Signatory Ms S. Rügheimer

Windhoek

info@analab.com.ni Tel +264 61 210 13; Cell +264 81 611 884; 71 Newcastle Stree

Walvis Bay

walvisbaylab@analab.com.n Cell +264 81 122 158 Unit 16, Ben Amathila Ave

PO Box 86782, Windhoek, Namibia

Remark:

Overall classification of water, considering only constituents that have been tested for: Group D: high risk or water unsuitable for human consumption

Interpretation based on guidelines for the evaluation of drinking water for human consumption, DWA, Namibia, April 1988 and South African Water Quality Guidelines Volume 5: Agricultural water use: Livestock watering, Second Edition, 1996

For practical reasons, the guidelines are divided into four groups. The highest group assigned to any of the constituents determines the classification of the water as a whole. Group A: excellent quality water Group B: good quality water Group C: low risk water Group D: high risk or water unsuitable for human consumption

Ideally water should be either Group A or Group B. If water is classified as Group C, the situation is not yet critical, but attention should be given to those constituents over the Group B limit. If however, the water is classified as Group D urgent and immediate attention is required to reduce the levels of the problem constituents in the water to suitable levels.

Sample acceptance:

Sample was collected in clients' own bottle / in bottles provided by the laboratory. Sample was suitable for testing

Walvis Bay

walvisbaylab@analab.com.n Cell +264 81 122 158 Unit 16, Ben Amathila Ave

PO Box 86782, Windhoek, Namibia

Assessment of water quality for human consumption

Naturally occurring chemicals that are of health significance in drinking water

Fluoride: Exposure to high levels of fluoride, which occurs naturally, can lead to mottling of teeth and, in severe cases, crippling skeletal fluorosis.

1.5-3.5 mg/l fluoride: the threshold for marked dental mottling with associated tooth damage due to softening of enamel is 1.5mg/L. Above this, mottling and tooth damage will probably be noticeable in most continuous users of the water. No other health effects occur.

Chemicals from agricultural activities that are of health significance in drinking water Nitrate and nitrite: In water it has been associated with methaemoglobinaemia, especially in bottle-fed infants >20 mg/l nitrate as N: methemoglobinaemia occurs in infants. Occurrence of mucous membrane irritation in adults

Some of the naturally occurring chemicals which occur in drinking water at concentrations below those at which toxic effects may occur.

Chloride: high concentrations of chloride give a salty taste to water. Concentrations in excess of 250 mg/l are increasingly likely to be detected by taste.

Hardness: Depending on the interaction of other factors, such as, pH and alkalinity, water with a hardness above approximately 200 mg/l may cause scale deposition in the pipe work and tanks. On heating, hard waters form deposits of calcium carbonate scale.

pH: Optimum pH 6.5-8.

pH does not exert direct health effects, but may exert indirect health effects via metal solubility.

Sodium: The average taste threshold for sodium is about 200 mg/l.

Sulphate: It is generally considered that the taste impairment is minimal at levels below 250 mg/l.

Magnesium: The average taste threshold for magnesium is about 70 mg/l

Total dissolved solids: The palatability of water with a TDS level of less than 600 mg/l is generally considered to be good; drinking water becomes significantly and increasingly unpalatable at TDS levels greater than about 1000 mg/l.

Turbidity is a measure of the light-scattering ability of water and is indicative of the concentration of suspended matter in water.

Microorganisms are often associated with turbidity, hence low turbidity minimises the potential for transmission of infectious diseases. Turbidity also affects the aesthetic quality of water.

Turbidity in water is caused by the presence of suspended matter which usually consists of a mixture of inorganic matter, such as clay and soil particles and organic matter.

Turbidity may also be associated with the presence of inorganic ions such as manganese(II) and iron(II).

The consumption of turbid water *per se* does not have any direct health effects, but associated effects due to microbial contamination or the ingestion of substances bound to particulate matter, do.

Aesthetic effects (appearance, taste, odour) of turbidity can be mitigated or removed by decantation or by filtration (or by both), accelerated, if necessary, by previous aeration

Analytical Laboratory Services

Windhoek info@analab.com.ni Tel +264 61 210 13; Cell +264 81 611 884; 71 Newcastle Stree

Walvis Bay

walvisbaylab@analab.com.n Cell +264 81 122 158 Unit 16, Ben Amathila Ave

PO Box 86782, Windhoek, Namibia

TEST REPORT

To:	Digby Wells Enviro	nmental SA			
	48 Grosvenor Road		Date received:	15/Dec/21	
	Bryanston		Date analysed:	14 Jan -8 Feb 2022	
:	2191		Date reported:	10/Feb/22	
:	South Africa				
Attn:	Megan Edwards		Client Reference no .:	AFT 7220	
email:	<u>megan.edwards@dig</u>	<u>gbywells.com</u>	Quotation no.:	QU-6835	
Tel: 2	27117899495		Lab Reference:	1212234	
			Enquiries: Ms M	1anuela Mayer	
Sample detai	ls	Borehole samples			
Location of sampling point		Uis, Afritin Mine			
Description of	of sampling point	BH10-4			

Date of sampling	14 Dec 2021, 20	0h00					
Test item number	1212234/14						
				Re	ecommended	maximum li	mits
				Hu	man consum	ption	Livestock
Parameter	Value	Units	Classification	Group A	Group B	Group C	watering
рН	6.9		А	6-9	5.5-9.5	4-11	
Electrical Conductivity	670	mS/m	D	150	300	400	
Turbidity	0.40	NTU	А	1	5	10	
Total Dissolved Solids (calc.)	4241	mg/l					6000
P-Alkalinity as CaCO ₃	0	mg/l					
Total Alkalinity as CaCO ₃	435	mg/l					
Total Hardness as CaCO ₃	1631	mg/l	D	300	650	1300	
Ca-Hardness as CaCO ₃	919	mg/l	С	375	500	1000	2500
Mg-Hardness as CaCO ₃	712	mg/l	С	290	420	840	2057
Chloride as Cl ⁻	1406	mg/l	D	250	600	1200	1500-3000
Fluoride as F ⁻	1.6	mg/l	В	1.5	2.0	3.0	2.0-6.0
Sulphate as SO ₄ ²⁻	1002	mg/l	С	200	600	1200	1000
Nitrate as N	23	mg/l	С	10	20	40	100
Nitrite as N	<0.01	mg/l					10
Ammonia as N	<0.02	mg/l					
Sodium as Na	894	mg/l	D	100	400	800	2000
Potassium as K	34	mg/l	А	200	400	800	
Magnesium as Mg	173	mg/l	С	70	100	200	500
Calcium as Ca	368	mg/l	С	150	200	400	1000
Manganese as Mn	<0.01	mg/l	А	0.05	1.0	2.0	10
Iron as Fe	0.01	mg/l	А	0.1	1.0	2.0	10
Stability pH, at 25°C	6.4						
Langelier Index	0.6	scaling		>0=scaling, <0)=corrosive, 0=s	stable	
Ryznar Index	5.8	scaling		<6.5=scaling,	>7,5=corrosive,	<u>></u> 6.5 and <u><</u> 7.5	=stable
Corrosivity ratio	7.0	increasing c	orrosive tendency	Applies to wat	ter in the pH rar	ige 7-8	
				which also cor	ntains dissolved	oxygen	

ratios <0.2 no corrosive properties ratios >0.2 increasing corrosive tendency

This test report is only valid without any alterations and shall not be published or reproduced excep laboratory. Page 40 of 45

Approved Technical Signatory Ms S. Rügheimer

Windhoek

info@analab.com.ni Tel +264 61 210 13; Cell +264 81 611 884; 71 Newcastle Stree

Walvis Bay

walvisbaylab@analab.com.n Cell +264 81 122 158 Unit 16, Ben Amathila Ave

PO Box 86782, Windhoek, Namibia

Remark:

Overall classification of water, considering only constituents that have been tested for: Group D: high risk or water unsuitable for human consumption

Interpretation based on guidelines for the evaluation of drinking water for human consumption, DWA, Namibia, April 1988 and South African Water Quality Guidelines Volume 5: Agricultural water use: Livestock watering, Second Edition, 1996

For practical reasons, the guidelines are divided into four groups. The highest group assigned to any of the constituents determines the classification of the water as a whole. Group A: excellent quality water Group B: good quality water Group C: low risk water Group D: high risk or water unsuitable for human consumption

Ideally water should be either Group A or Group B. If water is classified as Group C, the situation is not yet critical, but attention should be given to those constituents over the Group B limit. If however, the water is classified as Group D urgent and immediate attention is required to reduce the levels of the problem constituents in the water to suitable levels.

Sample acceptance:

Sample was collected in clients' own bottle / in bottles provided by the laboratory. Sample was suitable for testing

Walvis Bay

walvisbaylab@analab.com.n Cell +264 81 122 158 Unit 16, Ben Amathila Ave

PO Box 86782, Windhoek, Namibia

Assessment of water quality for human consumption

Naturally occurring chemicals that are of health significance in drinking water

Fluoride: Exposure to high levels of fluoride, which occurs naturally, can lead to mottling of teeth and, in severe cases, crippling skeletal fluorosis.

1.5-3.5 mg/l fluoride: the threshold for marked dental mottling with associated tooth damage due to softening of enamel is 1.5mg/L. Above this, mottling and tooth damage will probably be noticeable in most continuous users of the water. No other health effects occur.

Chemicals from agricultural activities that are of health significance in drinking water Nitrate and nitrite: In water it has been associated with methaemoglobinaemia, especially in bottle-fed infants >20 mg/l nitrate as N: methemoglobinaemia occurs in infants. Occurrence of mucous membrane irritation in adults

Some of the naturally occurring chemicals which occur in drinking water at concentrations below those at which toxic effects may occur.

Chloride: high concentrations of chloride give a salty taste to water. Concentrations in excess of 250 mg/l are increasingly likely to be detected by taste.

Hardness: Depending on the interaction of other factors, such as, pH and alkalinity, water with a hardness above approximately 200 mg/l may cause scale deposition in the pipe work and tanks. On heating, hard waters form deposits of calcium carbonate scale.

pH: Optimum pH 6.5-8.

pH does not exert direct health effects, but may exert indirect health effects via metal solubility.

Sodium: The average taste threshold for sodium is about 200 mg/l.

Sulphate: It is generally considered that the taste impairment is minimal at levels below 250 mg/l.

Magnesium: The average taste threshold for magnesium is about 70 mg/l

Total dissolved solids: The palatability of water with a TDS level of less than 600 mg/l is generally considered to be good; drinking water becomes significantly and increasingly unpalatable at TDS levels greater than about 1000 mg/l.

Turbidity is a measure of the light-scattering ability of water and is indicative of the concentration of suspended matter in water.

Microorganisms are often associated with turbidity, hence low turbidity minimises the potential for transmission of infectious diseases. Turbidity also affects the aesthetic quality of water.

Turbidity in water is caused by the presence of suspended matter which usually consists of a mixture of inorganic matter, such as clay and soil particles and organic matter.

Turbidity may also be associated with the presence of inorganic ions such as manganese(II) and iron(II).

The consumption of turbid water *per se* does not have any direct health effects, but associated effects due to microbial contamination or the ingestion of substances bound to particulate matter, do.

Aesthetic effects (appearance, taste, odour) of turbidity can be mitigated or removed by decantation or by filtration (or by both), accelerated, if necessary, by previous aeration

Analytical Laboratory Services

Windhoek info@analab.com.ni Tel +264 61 210 13; Cell +264 81 611 884; 71 Newcastle Stree

Walvis Bay

walvisbaylab@analab.com.n Cell +264 81 122 158 Unit 16, Ben Amathila Ave

PO Box 86782, Windhoek, Namibia

TEST REPORT

To: Digby	/ Wells Environmental SA		
48 Gro	osvenor Road	Date received:	15/Dec/21
Bryans	ston	Date analysed:	14 Jan - 8 Feb 2022
2191		Date reported:	10/Feb/22
South	Africa		
Attn: Megar	n Edwards	Client Reference no.:	AFT 7220
email: <u>mega</u>	<u>n.edwards@digbywells.com</u>	Quotation no.:	QU-6835
Tel: 27117	899495	Lab Reference:	I212234
		Enquiries: Ms M	lanuela Mayer
Sample details	Borehole samples		
Location of sampli	ng point Uis, Afritin Mine		
Description of sam	pling point BH10-5		

Date of sampling	15 Dec 2021, 12	2h00					
Test item number	I212234/15						
				Re	ecommended	l maximum li	mits
				Hu	man consum	ption	Livestock
Parameter	Value	Units	Classification	Group A	Group B	Group C	watering
рH	6.9		А	6-9	5.5-9.5	4-11	
Electrical Conductivity	670	mS/m	D	150	300	400	
Turbidity	0.40	NTU	А	1	5	10	
Total Dissolved Solids (calc.)	4386	mg/l					6000
P-Alkalinity as CaCO ₃	0	mg/l					
Total Alkalinity as CaCO ₃	425	mg/l					
Total Hardness as CaCO ₃	1642	mg/l	D	300	650	1300	
Ca-Hardness as CaCO₃	921	mg/l	С	375	500	1000	2500
Mg-Hardness as CaCO₃	721	mg/l	С	290	420	840	2057
Chloride as Cl	1429	mg/l	D	250	600	1200	1500-3000
Fluoride as F ⁻	1.6	mg/l	В	1.5	2.0	3.0	2.0-6.0
Sulphate as SO ₄ ²⁻	1002	mg/l	С	200	600	1200	1000
Nitrate as N	52	mg/l	D	10	20	40	100
Nitrite as N	<0.01	mg/l					10
Ammonia as N	<0.02	mg/l					
Sodium as Na	892	mg/l	D	100	400	800	2000
Potassium as K	34	mg/l	А	200	400	800	
Magnesium as Mg	175	mg/l	С	70	100	200	500
Calcium as Ca	369	mg/l	С	150	200	400	1000
Manganese as Mn	<0.01	mg/l	А	0.05	1.0	2.0	10
Iron as Fe	0.01	mg/l	А	0.1	1.0	2.0	10
Stability pH, at 25°C	6.4						
Langelier Index	0.5	scaling		>0=scaling, <0)=corrosive, 0=s	stable	
Ryznar Index	5.9	scaling		<6.5=scaling,	>7,5=corrosive,	<u>></u> 6.5 and <u><</u> 7.5	=stable
Corrosivity ratio	7.2	increasing c	orrosive tendency	Applies to wat	ter in the pH rar	nge 7-8	
				which also cor	ntains dissolved	oxygen	

ratios <0.2 no corrosive properties ratios >0.2 increasing corrosive tendency

This test report is only valid without any alterations and shall not be published or reproduced excep laboratory. Page 43 of 45

Approved Technical Signatory Ms S. Rügheimer

Windhoek

info@analab.com.ni Tel +264 61 210 13; Cell +264 81 611 884; 71 Newcastle Stree

Walvis Bay

walvisbaylab@analab.com.n Cell +264 81 122 158 Unit 16, Ben Amathila Ave

PO Box 86782, Windhoek, Namibia

Remark:

Overall classification of water, considering only constituents that have been tested for: Group D: high risk or water unsuitable for human consumption

Interpretation based on guidelines for the evaluation of drinking water for human consumption, DWA, Namibia, April 1988 and South African Water Quality Guidelines Volume 5: Agricultural water use: Livestock watering, Second Edition, 1996

For practical reasons, the guidelines are divided into four groups. The highest group assigned to any of the constituents determines the classification of the water as a whole. Group A: excellent quality water Group B: good quality water Group C: low risk water Group D: high risk or water unsuitable for human consumption

Ideally water should be either Group A or Group B. If water is classified as Group C, the situation is not yet critical, but attention should be given to those constituents over the Group B limit. If however, the water is classified as Group D urgent and immediate attention is required to reduce the levels of the problem constituents in the water to suitable levels.

Sample acceptance:

Sample was collected in clients' own bottle / in bottles provided by the laboratory. Sample was suitable for testing

Walvis Bay

walvisbaylab@analab.com.n Cell +264 81 122 158 Unit 16, Ben Amathila Ave

PO Box 86782, Windhoek, Namibia

Assessment of water quality for human consumption

Naturally occurring chemicals that are of health significance in drinking water

Fluoride: Exposure to high levels of fluoride, which occurs naturally, can lead to mottling of teeth and, in severe cases, crippling skeletal fluorosis.

1.5-3.5 mg/l fluoride: the threshold for marked dental mottling with associated tooth damage due to softening of enamel is 1.5mg/L. Above this, mottling and tooth damage will probably be noticeable in most continuous users of the water. No other health effects occur.

Chemicals from agricultural activities that are of health significance in drinking water Nitrate and nitrite: In water it has been associated with methaemoglobinaemia, especially in bottle-fed infants >20 mg/l nitrate as N: methemoglobinaemia occurs in infants. Occurrence of mucous membrane irritation in adults

Some of the naturally occurring chemicals which occur in drinking water at concentrations below those at which toxic effects may occur.

Chloride: high concentrations of chloride give a salty taste to water. Concentrations in excess of 250 mg/l are increasingly likely to be detected by taste.

Hardness: Depending on the interaction of other factors, such as, pH and alkalinity, water with a hardness above approximately 200 mg/l may cause scale deposition in the pipe work and tanks. On heating, hard waters form deposits of calcium carbonate scale.

pH: Optimum pH 6.5-8.

pH does not exert direct health effects, but may exert indirect health effects via metal solubility.

Sodium: The average taste threshold for sodium is about 200 mg/l.

Sulphate: It is generally considered that the taste impairment is minimal at levels below 250 mg/l.

Magnesium: The average taste threshold for magnesium is about 70 mg/l

Total dissolved solids: The palatability of water with a TDS level of less than 600 mg/l is generally considered to be good; drinking water becomes significantly and increasingly unpalatable at TDS levels greater than about 1000 mg/l.

Turbidity is a measure of the light-scattering ability of water and is indicative of the concentration of suspended matter in water.

Microorganisms are often associated with turbidity, hence low turbidity minimises the potential for transmission of infectious diseases. Turbidity also affects the aesthetic quality of water.

Turbidity in water is caused by the presence of suspended matter which usually consists of a mixture of inorganic matter, such as clay and soil particles and organic matter.

Turbidity may also be associated with the presence of inorganic ions such as manganese(II) and iron(II).

The consumption of turbid water *per se* does not have any direct health effects, but associated effects due to microbial contamination or the ingestion of substances bound to particulate matter, do.

Aesthetic effects (appearance, taste, odour) of turbidity can be mitigated or removed by decantation or by filtration (or by both), accelerated, if necessary, by previous aeration

Walvis Bay:

walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

TEST REPORT

To:	Digby Wells Envir	onmental SA (P	ty) Ltd.					
	48 Grosvenor Road			Dat	e received:	26/Jan/22		
	Brtanston 2191			Date	e analysed:	8 February -	28 March 202	22
	South Africa			Dat	e reported:	29/Mar/22		
Attn:	Ms Megan Edwards			Client Refe	erence no.:	AFT-7220		
e-mail:	megan.edwards@dig	bywells.com		Que	otation no.:	QU-6835		
Tel:	+27 11 789 9495			Lab	Reference:	1220280		
				Enq	uiries: Ms N	lanuela Mayer		
Sample det	tails	borehole water	r					
Location of	f sampling point	Uis, Afritin min	е					
Description	n of sampling point	BH11-1						
Date of san	npling	2022/01/16; 15:0	00					
Test item n	umber	1220280/1						
					R	ecommended	maximum li	imits
					Hu	Iman consum	ption	Livestock
Parameter		Value	Units	Classification	Group A	Group B	Group C	watering
рН		6.9	•	A	6-9	5.5-9.5	4-11	
Electrical C	Conductivity	2190	mS/m	D	150	300	400	
Turbidity		0.35	NTU	A	1	5	10	
Total Disso	olved Solids (calc.)	14809	mg/l					6000
P-Alkalinity	$/ as CaCO_3$	0	mg/l					
Total Alkali	inity as CaCO ₃	230	mg/l	_			1000	
Total Hardr	ness as CaCO ₃	5093	mg/l	D	300	650	1300	0500
Ca-Hardnes	ss as $CaCO_3$	2812	mg/l	D	375	500	1000	2500
Mg-Hardne	ss as CaCO ₃	2281	mg/l	D	290	420	840	2057
Chloride as		5991	mg/I	D	250	600	1200	1500-3000
Fluoride as	s F	1.3	mg/I	A	1.5	2.0	3.0	2.0-6.0
Sulphate as	s SO ₄ -	3131	mg/I	D	200	600	1200	1000
Nitrate as n		70	mg/i	D	10	20	40	100
Nitrite as N	 N	<0.01	mg/i					10
Ammonium	n as N	<0.02	mg/i	D	100	400	800	0000
Source as		3440	mg/l		200	400	800	2000
Magnasium		FF4	mg/l	A	200	400	200	500
		554 1196	mg/l	D	150	200	200	1000
Manganaa	o ca Na Mn	-0.1	ma/l		0.05	∠00 1 0	400 2 0	1000
Iron as Es	; a3 WIII	< U. I 0. 10	mg/l	R	0.05	1.0	2.0	10
Stability pL	t at 25°C	0.10	iiig/i	D	0.1	1.0	2.0	10
	1, al 20 0 ndov	0.2	cooling		0-cooling -	0_corrective 0 ct	abla	
		U. <i>1</i>	scalling	:	20=Sudiiny, <		ADIE	atabla
nyznar inde	ex	5.5	scaling	•	<0.0=scaiing,	>1,3=CORROSIVE, 2	≤.1 <u>≥</u> ons c.o <u>+</u>	slable

increasing corrosive tendency

51.0

Applies to water in the pH range 7-8

which also contains dissolved oxygen

ratios <0.2 no corrosive properties

ratios >0.2 increasing corrosive tendency

Corrosivity ratio

Approved Technical Signatory Ms. Manuela Mayer

This test report is only valid without any alterations and shall not be published or reproduced except in full, with written consent of the Page 1 of 3 laboratory.

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Remark:

Overall classification of water, considering only constituents that have been tested for: Group D: high risk or water unsuitable for human consumption

Interpretation based on guidelines for the evaluation of drinking water for human consumption, DWA, Namibia, April 1988 and South African Water Quality Guidelines Volume 5: Agricultural water use: Livestock watering, Second Edition, 1996

For practical reasons, the guidelines are divided into four groups. The highest group assigned to any of the constituents determines the classification of the water as a whole. Group A: excellent quality water Group B: good quality water Group C: low risk water Group D: high risk or water unsuitable for human consumption

Ideally water should be either Group A or Group B. If water is classified as Group C, the situation is not yet critical, but attention should be given to those constituents over the Group B limit. If however, the water is classified as Group D urgent and immediate attention is required to reduce the levels of the problem constituents in the water to suitable levels.

Sample acceptance:Sample was collected in bottles provided by the laboratory.
Sample was suitable for testing

Approved Technical Signatory

Ms. Manuela Mayer This test report is only valid without any alterations and shall not be published or reproduced except in full, with written consent of the laboratory. Page 2 of 3

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Assessment of water quality for human consumption

Naturally occurring chemicals that are of health significance in drinking water

Fluoride: Exposure to high levels of fluoride, which occurs naturally, can lead to mottling of teeth and, in severe cases, crippling skeletal fluorosis.

1.0-1.5 mg/l fluoride: slight mottling of dental enamel may occur in sensitive individuals. No other health effects are expected

Chemicals from agricultural activities that are of health significance in drinking water Nitrate and nitrite: In water it has been associated with methaemoglobinaemia, especially in bottle-fed infants >20 mg/l nitrate as N: methemoglobinaemia occurs in infants. Occurrence of mucous membrane irritation in adults

Some of the naturally occurring chemicals which occur in drinking water at concentrations below those at which toxic effects may occur.

Chloride: high concentrations of chloride give a salty taste to water. Concentrations in excess of 250 mg/l are increasingly likely to be detected by taste.

Hardness: Depending on the interaction of other factors, such as, pH and alkalinity, water with a hardness above approximately 200 mg/l may cause scale deposition in the pipe work and tanks. On heating, hard waters form deposits of calcium carbonate scale.

pH: Optimum pH 6.5-8.

pH does not exert direct health effects, but may exert indirect health effects via metal solubility.

Sodium: The average taste threshold for sodium is about 200 mg/l.

Sulphate: It is generally considered that the taste impairment is minimal at levels below 250 mg/l.

Magnesium: The average taste threshold for magnesium is about 70 mg/l

Total dissolved solids: The palatability of water with a TDS level of less than 600 mg/l is generally considered to be good; drinking water becomes significantly and increasingly unpalatable at TDS levels greater than about 1000 mg/l.

Turbidity is a measure of the light-scattering ability of water and is indicative of the concentration of suspended matter in water.

Microorganisms are often associated with turbidity, hence low turbidity minimises the potential for transmission of infectious diseases. Turbidity also affects the aesthetic quality of water.

Turbidity in water is caused by the presence of suspended matter which usually consists of a mixture of inorganic matter, such as clay and soil particles and organic matter.

Turbidity may also be associated with the presence of inorganic ions such as manganese(II) and iron(II).

The consumption of turbid water *per se* does not have any direct health effects, but associated effects due to microbial contamination or the ingestion of substances bound to particulate matter, do.

Aesthetic effects (appearance, taste, odour) of turbidity can be mitigated or removed by decantation or by filtration (or by both), accelerated, if necessary, by previous aeration

Approved Technical Signatory Ms. Manuela Mayer This test report is only valid without a

This test report is only valid without any alterations and shall not be published or reproduced except in full, with written consent of the laboratory. Page 3 of 3

Walvis Bay:

walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

TEST REPORT

To:	Digby Wells Envir	onmental SA (F	Pty) Ltd.					
	48 Grosvenor Road			Dat	e received:	26/Jan/22		
	Brtanston 2191			Date	e analysed:	8 February -	28 March 20	22
	South Africa			Dat	e reported:	29/Mar/22		
Attn:	Ms Megan Edwards			Client Ref	erence no.:	AFT-7220		
e-mail:	megan.edwards@dig	bywells.com		Que	otation no.:	QU-6835		
Tel:	+27 11 789 9495			Lab	Reference:	1220280		
				Enq	uiries: Ms N	lanuela Mayer		
Sample det	ails	borehole wate	ər					
Location of	f sampling point	Uis, Afritin mir	ne					
Description	n of sampling point	BH11-2						
Date of san	npling	2022/01/17; 14	:40					
Test item n	umber	1220280/2						
					R	ecommended	maximum li	mits
					Hı	iman consum	ption	Livestock
Parameter		Value	Units	Classification	Group A	Group B	Group C	watering
рН		6.9	•	A	6-9	5.5-9.5	4-11	
Electrical C	Conductivity	2010	mS/m	D	150	300	400	
Turbidity		0.30	NTU	A	1	5	10	
Total Disso	olved Solids (calc.)	13410	mg/l					6000
P-Alkalinity	/ as CaCO ₃	0	mg/l					
Total Alkali	inity as CaCO ₃	235	mg/l	_				
Total Hardr	ness as CaCO ₃	5000	mg/l	D	300	650	1300	
Ca-Hardnes	ss as $CaCO_3$	2797	mg/l	D	375	500	1000	2500
Mg-Hardne	ss as CaCO₃	2203	mg/l	D	290	420	840	2057
Chloride as		5530	mg/l	D	250	600	1200	1500-3000
Fluoride as	; F	1.2	mg/l	A	1.5	2.0	3.0	2.0-6.0
Sulphate as	s SO ₄ ²⁻	2785	mg/l	D	200	600	1200	1000
Nitrate as N	N	70	mg/l	D	10	20	40	100
Nitrite as N		0.01	mg/l					10
Ammonium	n as N	<0.02	mg/l					
Sodium as	Na	2891	mg/l	D	100	400	800	2000
Potassium	as K	95	mg/l	A	200	400	800	
Magnesium	n as Mg	535	mg/l	D	70	100	200	500
Calcium as	Ca	1120	mg/l	D	150	200	400	1000
Manganese	e as Mn	<0.1	mg/l	А	0.05	1.0	2.0	10
Iron as Fe		0.19	mg/l	В	0.1	1.0	2.0	10
Stability pH	l, at 25°C	6.2						
Langelier Ir	ndex	0.7	scaling	:	>0=scaling, <	0=corrosive, 0=st	able	
Ryznar Inde	ex	5.5	scaling		<6.5=scaling,	>7,5=corrosive, 2	<u>-</u> 6.5 and <u><</u> 7.5=	stable

increasing corrosive tendency

45.6

Applies to water in the pH range 7-8

which also contains dissolved oxygen

ratios <0.2 no corrosive properties

ratios >0.2 increasing corrosive tendency

Corrosivity ratio

Approved Technical Signatory Ms. Manuela Mayer

This test report is only valid without any alterations and shall not be published or reproduced except in full, with written consent of the Page 1 of 3 laboratory.

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Remark:

Overall classification of water, considering only constituents that have been tested for: Group D: high risk or water unsuitable for human consumption

Interpretation based on guidelines for the evaluation of drinking water for human consumption, DWA, Namibia, April 1988 and South African Water Quality Guidelines Volume 5: Agricultural water use: Livestock watering, Second Edition, 1996

For practical reasons, the guidelines are divided into four groups. The highest group assigned to any of the constituents determines the classification of the water as a whole. Group A: excellent quality water Group B: good quality water Group C: low risk water Group D: high risk or water unsuitable for human consumption

Ideally water should be either Group A or Group B. If water is classified as Group C, the situation is not yet critical, but attention should be given to those constituents over the Group B limit. If however, the water is classified as Group D urgent and immediate attention is required to reduce the levels of the problem constituents in the water to suitable levels.

Sample acceptance:Sample was collected in bottles provided by the laboratory.
Sample was suitable for testing

Approved Technical Signatory

Ms. Manuela Mayer This test report is only valid without any alterations and shall not be published or reproduced except in full, with written consent of the laboratory. Page 2 of 3

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Assessment of water quality for human consumption

Naturally occurring chemicals that are of health significance in drinking water

Fluoride: Exposure to high levels of fluoride, which occurs naturally, can lead to mottling of teeth and, in severe cases, crippling skeletal fluorosis.

1.0-1.5 mg/l fluoride: slight mottling of dental enamel may occur in sensitive individuals. No other health effects are expected

Chemicals from agricultural activities that are of health significance in drinking water Nitrate and nitrite: In water it has been associated with methaemoglobinaemia, especially in bottle-fed infants >20 mg/l nitrate as N: methemoglobinaemia occurs in infants. Occurrence of mucous membrane irritation in adults

Some of the naturally occurring chemicals which occur in drinking water at concentrations below those at which toxic effects may occur.

Chloride: high concentrations of chloride give a salty taste to water. Concentrations in excess of 250 mg/l are increasingly likely to be detected by taste.

Hardness: Depending on the interaction of other factors, such as, pH and alkalinity, water with a hardness above approximately 200 mg/l may cause scale deposition in the pipe work and tanks. On heating, hard waters form deposits of calcium carbonate scale.

pH: Optimum pH 6.5-8.

pH does not exert direct health effects, but may exert indirect health effects via metal solubility.

Sodium: The average taste threshold for sodium is about 200 mg/l.

Sulphate: It is generally considered that the taste impairment is minimal at levels below 250 mg/l.

Magnesium: The average taste threshold for magnesium is about 70 mg/l

Total dissolved solids: The palatability of water with a TDS level of less than 600 mg/l is generally considered to be good; drinking water becomes significantly and increasingly unpalatable at TDS levels greater than about 1000 mg/l.

Turbidity is a measure of the light-scattering ability of water and is indicative of the concentration of suspended matter in water.

Microorganisms are often associated with turbidity, hence low turbidity minimises the potential for transmission of infectious diseases. Turbidity also affects the aesthetic quality of water.

Turbidity in water is caused by the presence of suspended matter which usually consists of a mixture of inorganic matter, such as clay and soil particles and organic matter.

Turbidity may also be associated with the presence of inorganic ions such as manganese(II) and iron(II).

The consumption of turbid water *per se* does not have any direct health effects, but associated effects due to microbial contamination or the ingestion of substances bound to particulate matter, do.

Aesthetic effects (appearance, taste, odour) of turbidity can be mitigated or removed by decantation or by filtration (or by both), accelerated, if necessary, by previous aeration

Approved Technical Signatory Ms. Manuela Mayer This test report is only valid without a

This test report is only valid without any alterations and shall not be published or reproduced except in full, with written consent of the laboratory. Page 3 of 3

Walvis Bay:

walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

TEST REPORT

To:	Digby Wells Envir	onmental SA (P	ty) Ltd.					
	48 Grosvenor Road			Dat	e received:	26/Jan/22		
	Brtanston 2191			Date	e analysed:	8 February -	28 March 202	22
	South Africa			Dat	e reported:	29/Mar/22		
_								
Attn:	Ms Megan Edwards			Client Refe	erence no.:	AFT-7220		
e-mail:	megan.edwards@dig	bywells.com		Que	otation no.:	QU-6835		
Tel:	+27 11 789 9495			Lab	Reference:	1220280		
				Enq	uiries: Ms N	lanuela Mayer		
Sample det	ails	borehole water	r					
Location of	sampling point	Uis, Afritin min	е					
Description	of sampling point	BH11-3						
Date of san	npling	2022/01/17; 14:	20					
Test item n	umber	1220280/3						
					R	ecommended	maximum li	imits
_					Hu	iman consum	ption	Livestock
Parameter		Value	Units	Classification	Group A	Group B	Group C	watering
рН		6.9	•	A	6-9	5.5-9.5	4-11	
Electrical C	conductivity	1961	mS/m	D	150	300	400	
Turbidity		0.25	NTU	A	1	5	10	
Total Disso	lved Solids (calc.)	12764	mg/l					6000
P-Alkalinity	$as CaCO_3$	0	mg/l					
Total Alkali	nity as CaCO ₃	235	mg/l	_				
Total Hardr	ness as CaCO ₃	5033	mg/l	D	300	650	1300	
Ca-Hardnes	ss as CaCO ₃	2797	mg/l	D	375	500	1000	2500
Mg-Hardne	ss as CaCO ₃	2236	mg/l	D	290	420	840	2057
Chloride as	; Cl ⁻	5185	mg/l	D	250	600	1200	1500-3000
Fluoride as	F	1.2	mg/l	A	1.5	2.0	3.0	2.0-6.0
Sulphate as	s SO ₄ ²⁻	2656	mg/l	D	200	600	1200	1000
Nitrate as N	1	53	mg/l	D	10	20	40	100
Nitrite as N		<0.01	mg/l					10
Ammonium	n as N	<0.02	mg/l					
Sodium as	Na	2787	mg/l	D	100	400	800	2000
Potassium	as K	94	mg/l	A	200	400	800	
Magnesium	n as Mg	543	mg/l	D	70	100	200	500
Calcium as	Ca	1120	mg/l	D	150	200	400	1000
Manganese	e as Mn	<0.1	mg/l	A	0.05	1.0	2.0	10
Iron as Fe		0.49	mg/l	В	0.1	1.0	2.0	10
Stability pH	l, at 25°C	6.2						
Langelier Index		0.7	scaling	:	>0=scaling, <	0=corrosive, 0=st	able	
Ryznar Index		5.5	scaling	<6.5=scaling, >7,5=corrosive, \geq 6.5 and \leq 7.5=stable				stable

increasing corrosive tendency

42.9

Applies to water in the pH range 7-8

which also contains dissolved oxygen

ratios <0.2 no corrosive properties

ratios >0.2 increasing corrosive tendency

Corrosivity ratio

Approved Technical Signatory Ms. Manuela Mayer

This test report is only valid without any alterations and shall not be published or reproduced except in full, with written consent of the Page 1 of 3 laboratory.

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Remark:

Overall classification of water, considering only constituents that have been tested for: Group D: high risk or water unsuitable for human consumption

Interpretation based on guidelines for the evaluation of drinking water for human consumption, DWA, Namibia, April 1988 and South African Water Quality Guidelines Volume 5: Agricultural water use: Livestock watering, Second Edition, 1996

For practical reasons, the guidelines are divided into four groups. The highest group assigned to any of the constituents determines the classification of the water as a whole. Group A: excellent quality water Group B: good quality water Group C: low risk water Group D: high risk or water unsuitable for human consumption

Ideally water should be either Group A or Group B. If water is classified as Group C, the situation is not yet critical, but attention should be given to those constituents over the Group B limit. If however, the water is classified as Group D urgent and immediate attention is required to reduce the levels of the problem constituents in the water to suitable levels.

Sample acceptance:Sample was collected in bottles provided by the laboratory.
Sample was suitable for testing

Approved Technical Signatory

Ms. Manuela Mayer This test report is only valid without any alterations and shall not be published or reproduced except in full, with written consent of the laboratory. Page 2 of 3

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Assessment of water quality for human consumption

Naturally occurring chemicals that are of health significance in drinking water

Fluoride: Exposure to high levels of fluoride, which occurs naturally, can lead to mottling of teeth and, in severe cases, crippling skeletal fluorosis.

1.0-1.5 mg/l fluoride: slight mottling of dental enamel may occur in sensitive individuals. No other health effects are expected

Chemicals from agricultural activities that are of health significance in drinking water Nitrate and nitrite: In water it has been associated with methaemoglobinaemia, especially in bottle-fed infants >20 mg/l nitrate as N: methemoglobinaemia occurs in infants. Occurrence of mucous membrane irritation in adults

Some of the naturally occurring chemicals which occur in drinking water at concentrations below those at which toxic effects may occur.

Chloride: high concentrations of chloride give a salty taste to water. Concentrations in excess of 250 mg/l are increasingly likely to be detected by taste.

Hardness: Depending on the interaction of other factors, such as, pH and alkalinity, water with a hardness above approximately 200 mg/l may cause scale deposition in the pipe work and tanks. On heating, hard waters form deposits of calcium carbonate scale.

pH: Optimum pH 6.5-8.

pH does not exert direct health effects, but may exert indirect health effects via metal solubility.

Sodium: The average taste threshold for sodium is about 200 mg/l.

Sulphate: It is generally considered that the taste impairment is minimal at levels below 250 mg/l.

Magnesium: The average taste threshold for magnesium is about 70 mg/l

Total dissolved solids: The palatability of water with a TDS level of less than 600 mg/l is generally considered to be good; drinking water becomes significantly and increasingly unpalatable at TDS levels greater than about 1000 mg/l.

Turbidity is a measure of the light-scattering ability of water and is indicative of the concentration of suspended matter in water.

Microorganisms are often associated with turbidity, hence low turbidity minimises the potential for transmission of infectious diseases. Turbidity also affects the aesthetic quality of water.

Turbidity in water is caused by the presence of suspended matter which usually consists of a mixture of inorganic matter, such as clay and soil particles and organic matter.

Turbidity may also be associated with the presence of inorganic ions such as manganese(II) and iron(II).

The consumption of turbid water *per se* does not have any direct health effects, but associated effects due to microbial contamination or the ingestion of substances bound to particulate matter, do.

Aesthetic effects (appearance, taste, odour) of turbidity can be mitigated or removed by decantation or by filtration (or by both), accelerated, if necessary, by previous aeration

Approved Technical Signatory Ms. Manuela Mayer This test report is only valid without a

This test report is only valid without any alterations and shall not be published or reproduced except in full, with written consent of the laboratory. Page 3 of 3

Walvis Bay:

walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

TEST REPORT

To:	Digby Wells Envir	onmental SA (I	Pty) Ltd.					
	48 Grosvenor Road			Dat	e received:	26/Jan/22		
	Brtanston 2191			Date	e analysed:	8 February -	28 March 202	22
	South Africa			Dat	e reported:	29/Mar/22		
Attn:	Ms Megan Edwards			Client Ref	erence no.:	AFT-7220		
e-mail:	megan.edwards@dig	bywells.com		Que	otation no.:	QU-6835		
Tel:	+27 11 789 9495			Lab	Reference:	1220280		
				Enq	uiries: Ms N	lanuela Mayer		
Sample det	ails	borehole wate	er					
Location of	f sampling point	Uis, Afritin mi	ne					
Description	n of sampling point	BH11-4						
Date of san	npling	2022/01/18; 15	5:40					
Test item n	umber	1220280/4						
					R	ecommended	maximum li	imits
					Human con		ption	Livestock
Parameter		Value	Units	Classification	Group A	Group B	Group C	watering
рН		6.9	-	A	6-9	5.5-9.5	4-11	
Electrical C	conductivity	1938	mS/m	D	150	300	400	
Turbidity		0.20	NTU	A	1	5	10	
Total Disso	olved Solids (calc.)	12799	mg/l					6000
P-Alkalinity	/ as CaCO ₃	0	mg/l					
Total Alkali	inity as CaCO ₃	240	mg/l	_				
Total Hardr	ness as CaCO ₃	4917	mg/l	D	300	650	1300	
Ca-Hardnes	ss as $CaCO_3$	2714	mg/l	D	375	500	1000	2500
Mg-Hardne	ss as CaCO₃	2203	mg/l	D	290	420	840	2057
Chloride as		5300	mg/l	D	250	600	1200	1500-3000
Fluoride as	; F	1.2	mg/l	A	1.5	2.0	3.0	2.0-6.0
Sulphate as	s SO ₄ ²⁻	2670	mg/l	D	200	600	1200	1000
Nitrate as N	N	56	mg/l	D	10	20	40	100
Nitrite as N		<0.01	mg/l					10
Ammonium	n as N	<0.02	mg/l					
Sodium as	Na	2723	mg/l	D	100	400	800	2000
Potassium	as K	91	mg/l	A	200	400	800	
Magnesium	n as Mg	535	mg/l	D	70	100	200	500
Calcium as	Ca	1087	mg/l	D	150	200	400	1000
Manganese	e as Mn	0.24	mg/l	В	0.05	1.0	2.0	10
Iron as Fe		0.97	mg/l	В	0.1	1.0	2.0	10
Stability pH	l, at 25°C	6.2						
Langelier II	ndex	0.7	scaling		>0=scaling, <	0=corrosive, 0=st	able	
Ryznar Index		5.5	scaling		<6.5=scaling,	>7,5=corrosive, 2	<u>></u> 6.5 and <u><</u> 7.5=s	stable

increasing corrosive tendency

42.8

Applies to water in the pH range 7-8

which also contains dissolved oxygen

ratios <0.2 no corrosive properties

ratios >0.2 increasing corrosive tendency

Corrosivity ratio

Approved Technical Signatory Ms. Manuela Mayer

This test report is only valid without any alterations and shall not be published or reproduced except in full, with written consent of the Page 1 of 3 laboratory.

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Remark:

Overall classification of water, considering only constituents that have been tested for: Group D: high risk or water unsuitable for human consumption

Interpretation based on guidelines for the evaluation of drinking water for human consumption, DWA, Namibia, April 1988 and South African Water Quality Guidelines Volume 5: Agricultural water use: Livestock watering, Second Edition, 1996

For practical reasons, the guidelines are divided into four groups. The highest group assigned to any of the constituents determines the classification of the water as a whole. Group A: excellent quality water Group B: good quality water Group C: low risk water Group D: high risk or water unsuitable for human consumption

Ideally water should be either Group A or Group B. If water is classified as Group C, the situation is not yet critical, but attention should be given to those constituents over the Group B limit. If however, the water is classified as Group D urgent and immediate attention is required to reduce the levels of the problem constituents in the water to suitable levels.

Sample acceptance:Sample was collected in bottles provided by the laboratory.
Sample was suitable for testing

Approved Technical Signatory

Ms. Manuela Mayer This test report is only valid without any alterations and shall not be published or reproduced except in full, with written consent of the laboratory. Page 2 of 3

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Assessment of water quality for human consumption

Naturally occurring chemicals that are of health significance in drinking water

Fluoride: Exposure to high levels of fluoride, which occurs naturally, can lead to mottling of teeth and, in severe cases, crippling skeletal fluorosis.

1.0-1.5 mg/l fluoride: slight mottling of dental enamel may occur in sensitive individuals. No other health effects are expected

Chemicals from agricultural activities that are of health significance in drinking water Nitrate and nitrite: In water it has been associated with methaemoglobinaemia, especially in bottle-fed infants >20 mg/l nitrate as N: methemoglobinaemia occurs in infants. Occurrence of mucous membrane irritation in adults

Some of the naturally occurring chemicals which occur in drinking water at concentrations below those at which toxic effects may occur.

Chloride: high concentrations of chloride give a salty taste to water. Concentrations in excess of 250 mg/l are increasingly likely to be detected by taste.

Hardness: Depending on the interaction of other factors, such as, pH and alkalinity, water with a hardness above approximately 200 mg/l may cause scale deposition in the pipe work and tanks. On heating, hard waters form deposits of calcium carbonate scale.

pH: Optimum pH 6.5-8.

pH does not exert direct health effects, but may exert indirect health effects via metal solubility.

Sodium: The average taste threshold for sodium is about 200 mg/l.

Sulphate: It is generally considered that the taste impairment is minimal at levels below 250 mg/l.

Magnesium: The average taste threshold for magnesium is about 70 mg/l

Total dissolved solids: The palatability of water with a TDS level of less than 600 mg/l is generally considered to be good; drinking water becomes significantly and increasingly unpalatable at TDS levels greater than about 1000 mg/l.

Turbidity is a measure of the light-scattering ability of water and is indicative of the concentration of suspended matter in water.

Microorganisms are often associated with turbidity, hence low turbidity minimises the potential for transmission of infectious diseases. Turbidity also affects the aesthetic quality of water.

Turbidity in water is caused by the presence of suspended matter which usually consists of a mixture of inorganic matter, such as clay and soil particles and organic matter.

Turbidity may also be associated with the presence of inorganic ions such as manganese(II) and iron(II).

The consumption of turbid water *per se* does not have any direct health effects, but associated effects due to microbial contamination or the ingestion of substances bound to particulate matter, do.

Aesthetic effects (appearance, taste, odour) of turbidity can be mitigated or removed by decantation or by filtration (or by both), accelerated, if necessary, by previous aeration

Approved Technical Signatory Ms. Manuela Mayer This test report is only valid without a

This test report is only valid without any alterations and shall not be published or reproduced except in full, with written consent of the laboratory. Page 3 of 3

Walvis Bay:

walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

TEST REPORT

To:	Digby Wells Environ	onmental SA (F	Pty) Ltd.					
	48 Grosvenor Road			Dat	e received:	26/Jan/22		
	Brtanston 2191			Date	e analysed:	8 February -	28 March 20	22
	South Africa			Dat	e reported:	29/Mar/22		
Attn:	Ms Megan Edwards			Client Ref	erence no.:	AFT-7220		
e-mail:	megan.edwards@dig	bywells.com		Que	otation no.:	QU-6835		
Tel:	+27 11 789 9495			Lab	Reference:	1220280		
				Enq	uiries: Ms N	lanuela Mayer		
Sample det	ails	borehole wate	er					
Location of	f sampling point	Uis, Afritin mir	ne					
Description	n of sampling point	BH11-5						
Date of san	npling	2022/01/18; 15	:00					
Test item n	umber	1220280/5						
					R	ecommended	maximum li	imits
_					Hu	iman consum	ption	Livestock
Parameter		Value	Units	Classification	Group A	Group B	Group C	watering
рН	Sec. 1	7.0	0 /	A	6-9	5.5-9.5	4-11	
Electrical C	conductivity	1910	mS/m	D	150	300	400	
Turbialty		0.20	NIU 	A	I	5	10	C000
Total Disso	lived Solids (calc.)	12371	mg/l					6000
P-Alkalinity	$/ as CaCO_3$	0	mg/I					
Total Alkali	$\frac{1}{2}$	235	mg/i	D	200	650	1200	
	less as $CaCO_3$	4900	mg/i	D	300	630 500	1000	2500
Ma-Hardno	as as $CaCO_3$	2779	mg/l	D	200	300 420	840	2007
Oblarida as		2207	mg/l	D	290	420	1200	1500 2000
Chioride as		4904	mg/l	Δ	1.5	2.0	3.0	20-60
Fluoride as		2656	ma/l		200	600	1200	1000
Nitrato as N	s 30 ₄	54	ma/l	D	10	20	40	1000
Nitrite as N	•	~0 01	ma/l	D	10	20	40	10
Ammonium	n as N	<0.01	ma/l					10
Sodium as	Na	2639	ma/l	D	100	400	800	2000
Potassium	as K	90	ma/l	A	200	400	800	2000
Magnesium	n as Mg	536	ma/l	D	70	100	200	500
Calcium as	Ca	1113	ma/l	D	150	200	400	1000
Manganese	e as Mn	<0.1	ma/l	Ā	0.05	1.0	2.0	10
Iron as Fe		0.16	ma/l	В	0.1	1.0	2.0	10
Stability pl	l, at 25°C	6.2	- 3			-	-	-
Langelier li	ndex	0.8	scaling	:	>0=scaling, <	0=corrosive, 0=s	table	
Ryznar Index		5.4	scaling	<6.5=scaling, >7,5=corrosive, \geq 6.5 and \leq 7.5=stable				

increasing corrosive tendency

41.5

<6.5=scaling, >7,5=corrosive, ≥6.5 and ≤7.5=stable

Applies to water in the pH range 7-8

which also contains dissolved oxygen

ratios <0.2 no corrosive properties

ratios >0.2 increasing corrosive tendency

Corrosivity ratio

Approved Technical Signatory Ms. Manuela Mayer

This test report is only valid without any alterations and shall not be published or reproduced except in full, with written consent of the Page 1 of 3 laboratory.

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Remark:

Overall classification of water, considering only constituents that have been tested for: Group D: high risk or water unsuitable for human consumption

Interpretation based on guidelines for the evaluation of drinking water for human consumption, DWA, Namibia, April 1988 and South African Water Quality Guidelines Volume 5: Agricultural water use: Livestock watering, Second Edition, 1996

For practical reasons, the guidelines are divided into four groups. The highest group assigned to any of the constituents determines the classification of the water as a whole. Group A: excellent quality water Group B: good quality water Group C: low risk water Group D: high risk or water unsuitable for human consumption

Ideally water should be either Group A or Group B. If water is classified as Group C, the situation is not yet critical, but attention should be given to those constituents over the Group B limit. If however, the water is classified as Group D urgent and immediate attention is required to reduce the levels of the problem constituents in the water to suitable levels.

Sample acceptance:Sample was collected in bottles provided by the laboratory.
Sample was suitable for testing

Approved Technical Signatory

Ms. Manuela Mayer This test report is only valid without any alterations and shall not be published or reproduced except in full, with written consent of the laboratory. Page 2 of 3

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Assessment of water quality for human consumption

Naturally occurring chemicals that are of health significance in drinking water

Fluoride: Exposure to high levels of fluoride, which occurs naturally, can lead to mottling of teeth and, in severe cases, crippling skeletal fluorosis.

1.0-1.5 mg/l fluoride: slight mottling of dental enamel may occur in sensitive individuals. No other health effects are expected

Chemicals from agricultural activities that are of health significance in drinking water Nitrate and nitrite: In water it has been associated with methaemoglobinaemia, especially in bottle-fed infants >20 mg/l nitrate as N: methemoglobinaemia occurs in infants. Occurrence of mucous membrane irritation in adults

Some of the naturally occurring chemicals which occur in drinking water at concentrations below those at which toxic effects may occur.

Chloride: high concentrations of chloride give a salty taste to water. Concentrations in excess of 250 mg/l are increasingly likely to be detected by taste.

Hardness: Depending on the interaction of other factors, such as, pH and alkalinity, water with a hardness above approximately 200 mg/l may cause scale deposition in the pipe work and tanks. On heating, hard waters form deposits of calcium carbonate scale.

pH: Optimum pH 6.5-8.

pH does not exert direct health effects, but may exert indirect health effects via metal solubility.

Sodium: The average taste threshold for sodium is about 200 mg/l.

Sulphate: It is generally considered that the taste impairment is minimal at levels below 250 mg/l.

Magnesium: The average taste threshold for magnesium is about 70 mg/l

Total dissolved solids: The palatability of water with a TDS level of less than 600 mg/l is generally considered to be good; drinking water becomes significantly and increasingly unpalatable at TDS levels greater than about 1000 mg/l.

Turbidity is a measure of the light-scattering ability of water and is indicative of the concentration of suspended matter in water.

Microorganisms are often associated with turbidity, hence low turbidity minimises the potential for transmission of infectious diseases. Turbidity also affects the aesthetic quality of water.

Turbidity in water is caused by the presence of suspended matter which usually consists of a mixture of inorganic matter, such as clay and soil particles and organic matter.

Turbidity may also be associated with the presence of inorganic ions such as manganese(II) and iron(II).

The consumption of turbid water *per se* does not have any direct health effects, but associated effects due to microbial contamination or the ingestion of substances bound to particulate matter, do.

Aesthetic effects (appearance, taste, odour) of turbidity can be mitigated or removed by decantation or by filtration (or by both), accelerated, if necessary, by previous aeration

Approved Technical Signatory Ms. Manuela Mayer This test report is only valid without a

This test report is only valid without any alterations and shall not be published or reproduced except in full, with written consent of the laboratory. Page 3 of 3

Walvis Bay:

walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

TEST REPORT

To:	Digby Wells Envir	onmental SA (P	Pty) Ltd.					
	48 Grosvenor Road			Dat	e received:	26/Jan/22		
	Brtanston 2191			Date analysed:		8 February - 28 March 2022		
	South Africa			Dat	e reported:	29/Mar/22		
Attn:	Ms Megan Edwards			Client Ref	erence no.:	AFT-7220		
e-mail:	megan.edwards@dig	bywells.com		Que	otation no.:	QU-6835		
Tel:	+27 11 789 9495			Lab	Reference:	1220280		
				Enq	uiries: Ms N	lanuela Mayer		
Sample det	tails	borehole wate	er					
Location of	f sampling point	Uis, Afritin mir	ne					
Description	n of sampling point	BH4-1						
Date of san	npling	2022/01/11; 17	:00					
Test item n	umber	1220280/6						
					R	ecommended	maximum li	imits
					Ηι	iman consum	nption Livestock	
Parameter		Value	Units	Classification	Group A	Group B	Group C	watering
рН		6.9		A	6-9	5.5-9.5	4-11	
Electrical C	Conductivity	793	mS/m	D	150	300	400	
Turbidity		0.20	NTU	A	1	5	10	
Total Disso	olved Solids (calc.)	4654	mg/l					6000
P-Alkalinity	/ as CaCO ₃	0	mg/l					
Total Alkali	inity as CaCO ₃	400	mg/l	_				
Total Hardr	ness as CaCO ₃	2178	mg/l	D	300	650	1300	
Ca-Hardnes	ss as $CaCO_3$	1099	mg/l	D	375	500	1000	2500
Mg-Hardne	ss as $CaCO_3$	1079	mg/l	D	290	420	840	2057
Chloride as	s Cl ⁻	1659	mg/l	D	250	600	1200	1500-3000
Fluoride as	s F	0.9	mg/l	A	1.5	2.0	3.0	2.0-6.0
Sulphate as	s SO ₄ ²	959	mg/l	С	200	600	1200	1000
Nitrate as N	N	12	mg/l	В	10	20	40	100
Nitrite as N		<0.01	mg/l					10
Ammonium	n as N	<0.02	mg/l	_				
Sodium as	Na	994	mg/l	D	100	400	800	2000
Potassium	as K	46	mg/l	A	200	400	800	
Magnesium	n as Mg	262	mg/l	D	70	100	200	500
Calcium as	s Ca	440	mg/l	D	150	200	400	1000
Manganese as Mn		0.01	mg/l	A	0.05	1.0	2.0	10
Iron as Fe		0.05	mg/l	A	0.1	1.0	2.0	10
Stability pH	I, at 25°C	6.3						
Langelier II	ndex	0.6	scaling		>0=scaling, <	0=corrosive, 0=st	able	
Ryznar Index		5.7	scaling		<6.5=scaling,	>7,5=corrosive,	<u>></u> 6.5 and <u><</u> 7.5=	stable

<6.5=scaling, >7,5=corrosive, ≥6.5 and ≤7.5=stable

Applies to water in the pH range 7-8

which also contains dissolved oxygen

ratios <0.2 no corrosive properties

ratios >0.2 increasing corrosive tendency

Corrosivity ratio

Approved Technical Signatory Ms. Manuela Mayer

This test report is only valid without any alterations and shall not be published or reproduced except in full, with written consent of the Page 1 of 3 laboratory.

increasing corrosive tendency

8.4

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Remark:

Overall classification of water, considering only constituents that have been tested for: Group D: high risk or water unsuitable for human consumption

Interpretation based on guidelines for the evaluation of drinking water for human consumption, DWA, Namibia, April 1988 and South African Water Quality Guidelines Volume 5: Agricultural water use: Livestock watering, Second Edition, 1996

For practical reasons, the guidelines are divided into four groups. The highest group assigned to any of the constituents determines the classification of the water as a whole. Group A: excellent quality water Group B: good quality water Group C: low risk water Group D: high risk or water unsuitable for human consumption

Ideally water should be either Group A or Group B. If water is classified as Group C, the situation is not yet critical, but attention should be given to those constituents over the Group B limit. If however, the water is classified as Group D urgent and immediate attention is required to reduce the levels of the problem constituents in the water to suitable levels.

Sample acceptance:Sample was collected in bottles provided by the laboratory.
Sample was suitable for testing

Approved Technical Signatory

Ms. Manuela Mayer This test report is only valid without any alterations and shall not be published or reproduced except in full, with written consent of the laboratory. Page 2 of 3

Analytical Laboratory Services

Windhoek: info@analab.com.na Tel +264 61 210 132 Cell +264 81 611 8843 71 Newcastle Street

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Assessment of water quality for human consumption

Naturally occurring chemicals that are of health significance in drinking water

Fluoride: Exposure to high levels of fluoride, which occurs naturally, can lead to mottling of teeth and, in severe cases, crippling skeletal fluorosis.

0-1.0 mg/l fluoride: no adverse health effects or tooth damage occurs

Chemicals from agricultural activities that are of health significance in drinking water Nitrate and nitrite: In water it has been associated with methaemoglobinaemia, especially in bottle-fed infants 10-20 mg/l nitrate as N: methhaemoglobinaemia may occur in infants. No effects in adults.

Some of the naturally occurring chemicals which occur in drinking water at concentrations below those at which toxic effects may occur.

Chloride: high concentrations of chloride give a salty taste to water. Concentrations in excess of 250 mg/l are increasingly likely to be detected by taste.

Hardness: Depending on the interaction of other factors, such as, pH and alkalinity, water with a hardness above approximately 200 mg/l may cause scale deposition in the pipe work and tanks. On heating, hard waters form deposits of calcium carbonate scale.

pH: Optimum pH 6.5-8.

pH does not exert direct health effects, but may exert indirect health effects via metal solubility.

Sodium: The average taste threshold for sodium is about 200 mg/l.

Sulphate: It is generally considered that the taste impairment is minimal at levels below 250 mg/l.

Magnesium: The average taste threshold for magnesium is about 70 mg/l

Total dissolved solids: The palatability of water with a TDS level of less than 600 mg/l is generally considered to be good; drinking water becomes significantly and increasingly unpalatable at TDS levels greater than about 1000 mg/l.

Turbidity is a measure of the light-scattering ability of water and is indicative of the concentration of suspended matter in water.

Microorganisms are often associated with turbidity, hence low turbidity minimises the potential for transmission of infectious diseases. Turbidity also affects the aesthetic quality of water.

Turbidity in water is caused by the presence of suspended matter which usually consists of a mixture of inorganic matter, such as clay and soil particles and organic matter.

Turbidity may also be associated with the presence of inorganic ions such as manganese(II) and iron(II).

The consumption of turbid water *per se* does not have any direct health effects, but associated effects due to microbial contamination or the ingestion of substances bound to particulate matter, do.

Aesthetic effects (appearance, taste, odour) of turbidity can be mitigated or removed by decantation or by filtration (or by both), accelerated, if necessary, by previous aeration

Approved Technical Signatory Ms. Manuela Mayer This test report is only valid without an

This test report is only valid without any alterations and shall not be published or reproduced except in full, with written consent of the laboratory. Page 3 of 3

Walvis Bay:

walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

TEST REPORT

To:	Digby Wells Envir	onmental SA (P	Pty) Ltd.						
	48 Grosvenor Road			Da	ate received:	26/Jan/22			
	Brtanston 2191			Da	te analysed:	8 February -	28 March 20	22	
	South Africa			Da	ate reported:	29/Mar/22			
Attn:	Ms Megan Edwards			Client Re	ference no.:	AFT-7220			
e-mail:	megan.edwards@dig	bvwells.com		Qı	uotation no.:	QU-6835			
Tel:	+27 11 789 9495	- ,		Lab	Beference:	1220280			
			Enguiries: Ms Manuela Maver						
Sample det	ails	borehole wate	er		•	•			
Location of	f sampling point	Uis, Afritin mir	ne						
Description	n of sampling point	BH4-2							
Date of san	npling	2022/01/12; 17:	:00						
Test item n	umber	1220280/7							
					Re	commended	maximum li	imits	
					Hui	man consumption		Livestock	
Parameter		Value	Units	Classification	Group A	Group B	Group C	watering	
рН		6.9		A	6-9	5.5-9.5	4-11		
Electrical C	Conductivity	798	mS/m	D	150	300	400		
Turbidity		0.25	NTU	A	1	5	10		
Total Dissolved Solids (calc.)		4719	mg/l					6000	
P-Alkalinity as CaCO ₃		0	mg/l						
Total Alkalinity as CaCO ₃		380	mg/l						
Total Hardr	ness as CaCO ₃	2274	mg/l	D	300	650	1300		
Ca-Hardnes	ss as $CaCO_3$	1154	mg/l	D	375	500	1000	2500	
Mg-Hardne	ss as CaCO ₃	1120	mg/l	D	290	420	840	2057	
Chloride as	s Cl ⁻	1728	mg/l	D	250	600	1200	1500-3000	
Fluoride as	; F	0.8	mg/l	A	1.5	2.0	3.0	2.0-6.0	
Sulphate as	s SO ₄ ²⁻	953	mg/l	С	200	600	1200	1000	
Nitrate as N	N	6.0	mg/l	A	10	20	40	100	
Nitrite as N		<0.01	mg/l					10	
Ammonium	n as N	<0.02	mg/l						
Sodium as	Na	1002	mg/l	D	100	400	800	2000	
Potassium	as K	47	mg/l	A	200	400	800		
Magnesium	n as Mg	272	mg/l	D	70	100	200	500	
Calcium as	Ca	462	mg/l	D	150	200	400	1000	
Manganese as Mn		<0.01	mg/l	A	0.05	1.0	2.0	10	
Iron as Fe		0.02	mg/l	A	0.1	1.0	2.0	10	
Stability pH	l, at 25°C	6.3							
Langelier II	ndex	0.6	scaling		>0=scaling, <0	ecorrosive, 0=st	able		
Ryznar Inde	ex	5.8	scaling		<6.5=scaling, >	>7,5=corrosive, <u>></u>	<u>></u> 6.5 and <u><</u> 7.5=	stable	
Corrosivity ratio		9.0	increasing corrosive tendency		Applies to water in the pH range 7-8				

Applies to water in the pH range 7-8

which also contains dissolved oxygen

ratios <0.2 no corrosive properties

ratios >0.2 increasing corrosive tendency

Approved Technical Signatory Ms. Manuela Mayer

This test report is only valid without any alterations and shall not be published or reproduced except in full, with written consent of the Page 1 of 3 laboratory.

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Remark:

Overall classification of water, considering only constituents that have been tested for: Group D: high risk or water unsuitable for human consumption

Interpretation based on guidelines for the evaluation of drinking water for human consumption, DWA, Namibia, April 1988 and South African Water Quality Guidelines Volume 5: Agricultural water use: Livestock watering, Second Edition, 1996

For practical reasons, the guidelines are divided into four groups. The highest group assigned to any of the constituents determines the classification of the water as a whole. Group A: excellent quality water Group B: good quality water Group C: low risk water Group D: high risk or water unsuitable for human consumption

Ideally water should be either Group A or Group B. If water is classified as Group C, the situation is not yet critical, but attention should be given to those constituents over the Group B limit. If however, the water is classified as Group D urgent and immediate attention is required to reduce the levels of the problem constituents in the water to suitable levels.

Sample acceptance:Sample was collected in bottles provided by the laboratory.
Sample was suitable for testing

Approved Technical Signatory

Analytical Laboratory Services

Windhoek: info@analab.com.na Tel +264 61 210 132 Cell +264 81 611 8843 71 Newcastle Street

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Assessment of water quality for human consumption

Naturally occurring chemicals that are of health significance in drinking water

Fluoride: Exposure to high levels of fluoride, which occurs naturally, can lead to mottling of teeth and, in severe cases, crippling skeletal fluorosis.

0-1.0 mg/l fluoride: no adverse health effects or tooth damage occurs

Chemicals from agricultural activities that are of health significance in drinking water Nitrate and nitrite: In water it has been associated with methaemoglobinaemia, especially in bottle-fed infants 0-6 mg/l nitrate as N: no adverse health effects

Some of the naturally occurring chemicals which occur in drinking water at concentrations below those at which toxic effects may occur.

Chloride: high concentrations of chloride give a salty taste to water. Concentrations in excess of 250 mg/l are increasingly likely to be detected by taste.

Hardness: Depending on the interaction of other factors, such as, pH and alkalinity, water with a hardness above approximately 200 mg/l may cause scale deposition in the pipe work and tanks. On heating, hard waters form deposits of calcium carbonate scale.

pH: Optimum pH 6.5-8.

pH does not exert direct health effects, but may exert indirect health effects via metal solubility.

Sodium: The average taste threshold for sodium is about 200 mg/l.

Sulphate: It is generally considered that the taste impairment is minimal at levels below 250 mg/l.

Magnesium: The average taste threshold for magnesium is about 70 mg/l

Total dissolved solids: The palatability of water with a TDS level of less than 600 mg/l is generally considered to be good; drinking water becomes significantly and increasingly unpalatable at TDS levels greater than about 1000 mg/l.

Turbidity is a measure of the light-scattering ability of water and is indicative of the concentration of suspended matter in water.

Microorganisms are often associated with turbidity, hence low turbidity minimises the potential for transmission of infectious diseases. Turbidity also affects the aesthetic quality of water.

Turbidity in water is caused by the presence of suspended matter which usually consists of a mixture of inorganic matter, such as clay and soil particles and organic matter.

Turbidity may also be associated with the presence of inorganic ions such as manganese(II) and iron(II).

The consumption of turbid water *per se* does not have any direct health effects, but associated effects due to microbial contamination or the ingestion of substances bound to particulate matter, do.

Aesthetic effects (appearance, taste, odour) of turbidity can be mitigated or removed by decantation or by filtration (or by both), accelerated, if necessary, by previous aeration

Approved Technical Signatory Ms. Manuela Mayer This test report is only valid without an

Walvis Bay:

walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

TEST REPORT

To:	Digby Wells Envir	onmental SA (P	rty) Ltd.					
	48 Grosvenor Road			Da	ate received:	26/Jan/22		
	Brtanston 2191			Da	te analysed:	8 February -	28 March 20	22
	South Africa			Da	ate reported:	29/Mar/22		
Attn:	Ms Megan Edwards			Client Re	ference no.:	AFT-7220		
e-mail:	megan.edwards@dig	bvwells.com		Qı	uotation no.:	QU-6835		
Tel:	+27 11 789 9495			Lat	Beference:	1220280		
				En	quiries: Ms M	anuela Mayer		
Sample det	ails	borehole wate	er					
Location of	f sampling point	Uis, Afritin mir	ne					
Description	n of sampling point	BH4-3						
Date of san	npling	2022/01/13; 17:	:00					
Test item n	umber	1220280/8						
					Re	commended	maximum li	imits
					Hui	man consum	ption	Livestock
Parameter		Value	Units	Classification	Group A	Group B	Group C	watering
рН		7.0		A	6-9	5.5-9.5	4-11	
Electrical C	Conductivity	798	mS/m	D	150	300	400	
Turbidity		0.25	NTU	A	1	5	10	
Total Disso	lved Solids (calc.)	4843	mg/l					6000
P-Alkalinity	/ as CaCO ₃	0	mg/l					
Total Alkali	inity as CaCO ₃	385	mg/l					
Total Hardr	ness as CaCO ₃	2248	mg/l	D	300	650	1300	
Ca-Hardnes	ss as $CaCO_3$	1136	mg/l	D	375	500	1000	2500
Mg-Hardne	ss as CaCO ₃	1112	mg/l	D	290	420	840	2057
Chloride as	s Cl ⁻	1866	mg/l	D	250	600	1200	1500-3000
Fluoride as	F	0.8	mg/l	A	1.5	2.0	3.0	2.0-6.0
Sulphate as	s SO4 ²⁻	948	mg/l	С	200	600	1200	1000
Nitrate as N	N	11	mg/l	В	10	20	40	100
Nitrite as N		<0.01	mg/l					10
Ammonium	n as N	<0.02	mg/l					
Sodium as	Na	976	mg/l	D	100	400	800	2000
Potassium	as K	47	mg/l	A	200	400	800	
Magnesium	n as Mg	270	mg/l	D	70	100	200	500
Calcium as	Ca	455	mg/l	D	150	200	400	1000
Manganese	e as Mn	<0.01	mg/l	A	0.05	1.0	2.0	10
Iron as Fe		0.01	mg/l	A	0.1	1.0	2.0	10
Stability pH	l, at 25°C	6.3						
Langelier I	ndex	0.7	scaling		>0=scaling, <0	=corrosive, 0=st	able	
Ryznar Inde	ex	5.7	scaling		<6.5=scaling, >	>7,5=corrosive, <u>></u>	<u>></u> 6.5 and <u><</u> 7.5=s	stable
Corrosivity	ratio	9.4	increasing co	rrosive tendency	Applies to wat	er in the pH rang	je 7-8	

Applies to water in the pH range 7-8

which also contains dissolved oxygen

ratios <0.2 no corrosive properties

ratios >0.2 increasing corrosive tendency

Approved Technical Signatory Ms. Manuela Mayer

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Remark:

Overall classification of water, considering only constituents that have been tested for: Group D: high risk or water unsuitable for human consumption

Interpretation based on guidelines for the evaluation of drinking water for human consumption, DWA, Namibia, April 1988 and South African Water Quality Guidelines Volume 5: Agricultural water use: Livestock watering, Second Edition, 1996

For practical reasons, the guidelines are divided into four groups. The highest group assigned to any of the constituents determines the classification of the water as a whole. Group A: excellent quality water Group B: good quality water Group C: low risk water Group D: high risk or water unsuitable for human consumption

Ideally water should be either Group A or Group B. If water is classified as Group C, the situation is not yet critical, but attention should be given to those constituents over the Group B limit. If however, the water is classified as Group D urgent and immediate attention is required to reduce the levels of the problem constituents in the water to suitable levels.

Sample acceptance:Sample was collected in bottles provided by the laboratory.
Sample was suitable for testing

Approved Technical Signatory

Analytical Laboratory Services

Windhoek: info@analab.com.na Tel +264 61 210 132 Cell +264 81 611 8843 71 Newcastle Street

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Assessment of water quality for human consumption

Naturally occurring chemicals that are of health significance in drinking water

Fluoride: Exposure to high levels of fluoride, which occurs naturally, can lead to mottling of teeth and, in severe cases, crippling skeletal fluorosis.

0-1.0 mg/l fluoride: no adverse health effects or tooth damage occurs

Chemicals from agricultural activities that are of health significance in drinking water Nitrate and nitrite: In water it has been associated with methaemoglobinaemia, especially in bottle-fed infants 10-20 mg/l nitrate as N: methhaemoglobinaemia may occur in infants. No effects in adults.

Some of the naturally occurring chemicals which occur in drinking water at concentrations below those at which toxic effects may occur.

Chloride: high concentrations of chloride give a salty taste to water. Concentrations in excess of 250 mg/l are increasingly likely to be detected by taste.

Hardness: Depending on the interaction of other factors, such as, pH and alkalinity, water with a hardness above approximately 200 mg/l may cause scale deposition in the pipe work and tanks. On heating, hard waters form deposits of calcium carbonate scale.

pH: Optimum pH 6.5-8.

pH does not exert direct health effects, but may exert indirect health effects via metal solubility.

Sodium: The average taste threshold for sodium is about 200 mg/l.

Sulphate: It is generally considered that the taste impairment is minimal at levels below 250 mg/l.

Magnesium: The average taste threshold for magnesium is about 70 mg/l

Total dissolved solids: The palatability of water with a TDS level of less than 600 mg/l is generally considered to be good; drinking water becomes significantly and increasingly unpalatable at TDS levels greater than about 1000 mg/l.

Turbidity is a measure of the light-scattering ability of water and is indicative of the concentration of suspended matter in water.

Microorganisms are often associated with turbidity, hence low turbidity minimises the potential for transmission of infectious diseases. Turbidity also affects the aesthetic quality of water.

Turbidity in water is caused by the presence of suspended matter which usually consists of a mixture of inorganic matter, such as clay and soil particles and organic matter.

Turbidity may also be associated with the presence of inorganic ions such as manganese(II) and iron(II).

The consumption of turbid water *per se* does not have any direct health effects, but associated effects due to microbial contamination or the ingestion of substances bound to particulate matter, do.

Aesthetic effects (appearance, taste, odour) of turbidity can be mitigated or removed by decantation or by filtration (or by both), accelerated, if necessary, by previous aeration

Approved Technical Signatory Ms. Manuela Mayer This test report is only valid without an

Walvis Bay:

walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

TEST REPORT

To:	Digby Wells Envir	onmental SA (Pty) Ltd.					
	48 Grosvenor Road			Dat	e received:	26/Jan/22		
	Brtanston 2191			Date	e analysed:	8 February -	28 March 20	22
	South Africa			Dat	e reported:	29/Mar/22		
Attn:	Ms Megan Edwards			Client Ref	erence no.:	AFT-7220		
e-mail:	megan.edwards@dig	jbywells.com		Que	otation no.:	QU-6835		
Tel:	+27 11 789 9495			Lab	Reference:	1220280		
				Enq	uiries: Ms N	lanuela Mayer		
Sample det	ails	borehole wat	er					
Location of	i sampling point	Uis, Afritin mi	ne					
Description	of sampling point	BH4-4						
Date of san	npling	2022/010/13; 1	7:10					
Test item n	umber	1220280/9						
					R	ecommended	maximum li	imits
					Hu	iman consum	ption	Livestock
Parameter		Value	Units	Classification	Group A	Group B	Group C	watering
рН		7.0	•	A	6-9	5.5-9.5	4-11	
Electrical C	Conductivity	803	mS/m	D	150	300	400	
Turbidity		0.75	NTU	A	1	5	10	
Total Disso	lved Solids (calc.)	4917	mg/l					6000
P-Alkalinity	as CaCO ₃	0	mg/l					
Total Alkali	nity as CaCO ₃	385	mg/l	_				
Total Hardr	ness as CaCO ₃	2265	mg/l	D	300	650	1300	
Ca-Hardnes	ss as $CaCO_3$	1141	mg/l	D	375	500	1000	2500
Mg-Hardne	ss as CaCO $_3$	1124	mg/l	D	290	420	840	2057
Chloride as		1889	mg/l	D	250	600	1200	1500-3000
Fluoride as	F	0.8	mg/l	A	1.5	2.0	3.0	2.0-6.0
Sulphate as	s SO ₄ ²⁻	986	mg/l	С	200	600	1200	1000
Nitrate as N	1	8.8	mg/l	A	10	20	40	100
Nitrite as N		<0.01	mg/l					10
Ammonium	n as N	<0.02	mg/l					
Sodium as	Na	993	mg/l	D	100	400	800	2000
Potassium	as K	48	mg/l	A	200	400	800	
Magnesium	n as Mg	273	mg/l	D	70	100	200	500
Calcium as	Ca	457	mg/l	D	150	200	400	1000
Manganese	e as Mn	<0.01	mg/l	А	0.05	1.0	2.0	10
Iron as Fe		0.02	mg/l	А	0.1	1.0	2.0	10
Stability pH	l, at 25°C	6.3						
Langelier Index 0.7			scaling	:	>0=scaling, <	0=corrosive, 0=st	able	
Ryznar Index		5.7	scaling		<6.5=scaling,	>7,5=corrosive, 2	<u>></u> 6.5 and <u><</u> 7.5=9	stable

increasing corrosive tendency

9.6

Applies to water in the pH range 7-8

which also contains dissolved oxygen

ratios <0.2 no corrosive properties

ratios >0.2 increasing corrosive tendency

Corrosivity ratio

Approved Technical Signatory Ms. Manuela Mayer

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Remark:

Overall classification of water, considering only constituents that have been tested for: Group D: high risk or water unsuitable for human consumption

Interpretation based on guidelines for the evaluation of drinking water for human consumption, DWA, Namibia, April 1988 and South African Water Quality Guidelines Volume 5: Agricultural water use: Livestock watering, Second Edition, 1996

For practical reasons, the guidelines are divided into four groups. The highest group assigned to any of the constituents determines the classification of the water as a whole. Group A: excellent quality water Group B: good quality water Group C: low risk water Group D: high risk or water unsuitable for human consumption

Ideally water should be either Group A or Group B. If water is classified as Group C, the situation is not yet critical, but attention should be given to those constituents over the Group B limit. If however, the water is classified as Group D urgent and immediate attention is required to reduce the levels of the problem constituents in the water to suitable levels.

Sample acceptance:Sample was collected in bottles provided by the laboratory.
Sample was suitable for testing

Approved Technical Signatory

Analytical Laboratory Services

Windhoek: info@analab.com.na Tel +264 61 210 132 Cell +264 81 611 8843 71 Newcastle Street

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Assessment of water quality for human consumption

Naturally occurring chemicals that are of health significance in drinking water

Fluoride: Exposure to high levels of fluoride, which occurs naturally, can lead to mottling of teeth and, in severe cases, crippling skeletal fluorosis.

0-1.0 mg/l fluoride: no adverse health effects or tooth damage occurs

Chemicals from agricultural activities that are of health significance in drinking water

Nitrate and nitrite: In water it has been associated with methaemoglobinaemia, especially in bottle-fed infants 6-10 mg/l nitrate as N: rare instances of methhaemoglobinaemia in infants; no effects in adults. Concentrations in this range generally well tolerated.

Some of the naturally occurring chemicals which occur in drinking water at concentrations below those at which toxic effects may occur.

Chloride: high concentrations of chloride give a salty taste to water. Concentrations in excess of 250 mg/l are increasingly likely to be detected by taste.

Hardness: Depending on the interaction of other factors, such as, pH and alkalinity, water with a hardness above approximately 200 mg/l may cause scale deposition in the pipe work and tanks. On heating, hard waters form deposits of calcium carbonate scale.

pH: Optimum pH 6.5-8.

pH does not exert direct health effects, but may exert indirect health effects via metal solubility.

Sodium: The average taste threshold for sodium is about 200 mg/l.

Sulphate: It is generally considered that the taste impairment is minimal at levels below 250 mg/l.

Magnesium: The average taste threshold for magnesium is about 70 mg/l

Total dissolved solids: The palatability of water with a TDS level of less than 600 mg/l is generally considered to be good; drinking water becomes significantly and increasingly unpalatable at TDS levels greater than about 1000 mg/l.

Turbidity is a measure of the light-scattering ability of water and is indicative of the concentration of suspended matter in water.

Microorganisms are often associated with turbidity, hence low turbidity minimises the potential for transmission of infectious diseases. Turbidity also affects the aesthetic quality of water.

Turbidity in water is caused by the presence of suspended matter which usually consists of a mixture of inorganic matter, such as clay and soil particles and organic matter.

Turbidity may also be associated with the presence of inorganic ions such as manganese(II) and iron(II).

The consumption of turbid water *per se* does not have any direct health effects, but associated effects due to microbial contamination or the ingestion of substances bound to particulate matter, do.

Aesthetic effects (appearance, taste, odour) of turbidity can be mitigated or removed by decantation or by filtration (or by both), accelerated, if necessary, by previous aeration

Approved Technical Signatory Ms. Manuela Mayer This test report is only valid without any a

Walvis Bay:

walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

TEST REPORT

To:	Digby Wells Envir	onmental SA (P	ty) Ltd.					
	48 Grosvenor Road			Dat	e received:	26/Jan/22		
	Brtanston 2191			Date	e analysed:	8 February -	28 March 20	22
	South Africa			Dat	e reported:	29/Mar/22		
Attn:	Ms Megan Edwards			Client Ref	erence no.:	AFT-7220		
e-mail:	megan.edwards@dig	bywells.com		Que	otation no.:	QU-6835		
Tel:	+27 11 789 9495			Lab	Reference:	1220280		
				Enq	uiries: Ms N	lanuela Mayer		
Sample det	tails	borehole water						
Location of	f sampling point	Uis, Afritin mine	е					
Description	n of sampling point	BH4-5						
Date of san	npling	2022/01/13; 17:0	00					
Test item n	umber	1220280/10						
					R	ecommended	maximum li	imits
					Hu	ıman consum	ption	Livestock
Parameter		Value	Units	Classification	Group A	Group B	Group C	watering
рН		7.0		А	6-9	5.5-9.5	4-11	
Electrical C	Conductivity	805	mS/m	D	150	300	400	
Turbidity		0.30	NTU	A	1	5	10	
Total Disso	olved Solids (calc.)	5074	mg/l					6000
P-Alkalinity	/ as CaCO ₃	0	mg/l					
Total Alkali	inity as CaCO ₃	380	mg/l					
Total Hardr	ness as CaCO ₃	2307	mg/l	D	300	650	1300	
Ca-Hardnes	ss as $CaCO_3$	1154	mg/l	D	375	500	1000	2500
Mg-Hardne	ss as CaCO ₃	1153	mg/l	D	290	420	840	2057
Chloride as	s Cl ⁻	1774	mg/l	D	250	600	1200	1500-3000
Fluoride as	s F	0.9	mg/l	A	1.5	2.0	3.0	2.0-6.0
Sulphate as	s SO ₄ ²⁻	1215	mg/l	D	200	600	1200	1000
Nitrate as N	N	8.1	mg/l	A	10	20	40	100
Nitrite as N		<0.01	mg/l					10
Ammonium	n as N	<0.02	mg/l					
Sodium as	Na	1030	mg/l	D	100	400	800	2000
Potassium	as K	48	mg/l	A	200	400	800	
Magnesium	n as Mg	280	mg/l	D	70	100	200	500
Calcium as	a Ca	462	mg/l	D	150	200	400	1000
Manganese	e as Mn	<0.01	mg/l	A	0.05	1.0	2.0	10
Iron as Fe		0.03	mg/l	A	0.1	1.0	2.0	10
Stability pH	l, at 25°C	6.3						
Langelier li	ndex	0.7	scaling	:	>0=scaling, <	0=corrosive, 0=st	able	
Ryznar Inde	ex	5.7	scaling		<6.5=scaling,	>7,5=corrosive,	<u>></u> 6.5 and <u><</u> 7.5=	stable

<6.5=scaling, >7,5=corrosive, ≥6.5 and ≤7.5=stable

Applies to water in the pH range 7-8

which also contains dissolved oxygen

ratios <0.2 no corrosive properties

ratios >0.2 increasing corrosive tendency

Corrosivity ratio

Approved Technical Signatory Ms. Manuela Mayer

This test report is only valid without any alterations and shall not be published or reproduced except in full, with written consent of the Page 1 of 3 laboratory.

increasing corrosive tendency

9.9

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Remark:

Overall classification of water, considering only constituents that have been tested for: Group D: high risk or water unsuitable for human consumption

Interpretation based on guidelines for the evaluation of drinking water for human consumption, DWA, Namibia, April 1988 and South African Water Quality Guidelines Volume 5: Agricultural water use: Livestock watering, Second Edition, 1996

For practical reasons, the guidelines are divided into four groups. The highest group assigned to any of the constituents determines the classification of the water as a whole. Group A: excellent quality water Group B: good quality water Group C: low risk water Group D: high risk or water unsuitable for human consumption

Ideally water should be either Group A or Group B. If water is classified as Group C, the situation is not yet critical, but attention should be given to those constituents over the Group B limit. If however, the water is classified as Group D urgent and immediate attention is required to reduce the levels of the problem constituents in the water to suitable levels.

Sample acceptance:Sample was collected in bottles provided by the laboratory.
Sample was suitable for testing

Approved Technical Signatory

Analytical Laboratory Services

Windhoek: info@analab.com.na Tel +264 61 210 132 Cell +264 81 611 8843 71 Newcastle Street

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Assessment of water quality for human consumption

Naturally occurring chemicals that are of health significance in drinking water

Fluoride: Exposure to high levels of fluoride, which occurs naturally, can lead to mottling of teeth and, in severe cases, crippling skeletal fluorosis.

0-1.0 mg/l fluoride: no adverse health effects or tooth damage occurs

Chemicals from agricultural activities that are of health significance in drinking water

Nitrate and nitrite: In water it has been associated with methaemoglobinaemia, especially in bottle-fed infants 6-10 mg/l nitrate as N: rare instances of methhaemoglobinaemia in infants; no effects in adults. Concentrations in this range generally well tolerated.

Some of the naturally occurring chemicals which occur in drinking water at concentrations below those at which toxic effects may occur.

Chloride: high concentrations of chloride give a salty taste to water. Concentrations in excess of 250 mg/l are increasingly likely to be detected by taste.

Hardness: Depending on the interaction of other factors, such as, pH and alkalinity, water with a hardness above approximately 200 mg/l may cause scale deposition in the pipe work and tanks. On heating, hard waters form deposits of calcium carbonate scale.

pH: Optimum pH 6.5-8.

pH does not exert direct health effects, but may exert indirect health effects via metal solubility.

Sodium: The average taste threshold for sodium is about 200 mg/l.

Sulphate: It is generally considered that the taste impairment is minimal at levels below 250 mg/l.

Magnesium: The average taste threshold for magnesium is about 70 mg/l

Total dissolved solids: The palatability of water with a TDS level of less than 600 mg/l is generally considered to be good; drinking water becomes significantly and increasingly unpalatable at TDS levels greater than about 1000 mg/l.

Turbidity is a measure of the light-scattering ability of water and is indicative of the concentration of suspended matter in water.

Microorganisms are often associated with turbidity, hence low turbidity minimises the potential for transmission of infectious diseases. Turbidity also affects the aesthetic quality of water.

Turbidity in water is caused by the presence of suspended matter which usually consists of a mixture of inorganic matter, such as clay and soil particles and organic matter.

Turbidity may also be associated with the presence of inorganic ions such as manganese(II) and iron(II).

The consumption of turbid water *per se* does not have any direct health effects, but associated effects due to microbial contamination or the ingestion of substances bound to particulate matter, do.

Aesthetic effects (appearance, taste, odour) of turbidity can be mitigated or removed by decantation or by filtration (or by both), accelerated, if necessary, by previous aeration

Approved Technical Signatory Ms. Manuela Mayer This test report is only valid without any a

Walvis Bay:

walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

TEST REPORT

To:	Digby Wells Enviro	onmental SA (F	Pty) Ltd.					
	48 Grosvenor Road			Dat	e received:	26/Jan/22		
	Brtanston 2191			Date	e analysed:	8 February -	28 March 202	22
	South Africa			Dat	e reported:	29/Mar/22		
Attn	Ms Megan Edwards			Client Bef	erence no :	AFT-7220		
e-mail:	megan edwards@did	bywells com		Que	otation no :	QU-6835		
Tel·	+27 11 789 9495	oy nonoroonn		Lab	Reference:	1220280		
101.	+27 11 700 0400			Eng	uiries: Ms M	anuela Mayer		
Sample det	tails	borehole wate	er					
Location of	f sampling point	Uis, Afritin mir	ne					
Descriptior	n of sampling point	BH9-1						
Date of san	npling	2022/01/07; 20	:00					
Test item n	number	1220280/11						
					Re	commended	maximum li	mits
					Hu	man consum	ption	Livestock
Parameter		Value	Units	Classification	Group A	Group B	Group C	watering
рН		7.3		A	6-9	5.5-9.5	4-11	
Electrical C	Conductivity	433	mS/m	D	150	300	400	
Turbidity		0.70	NTU	A	1	5	10	
Total Disso	olved Solids (calc.)	2490	mg/l					6000
P-Alkalinity	y as CaCO₃	0	mg/l					
Total Alkali	inity as CaCO ₃	395	mg/l					
Total Hardr	ness as CaCO ₃	760	mg/l	С	300	650	1300	
Ca-Hardnes	ss as CaCO₃	390	mg/l	В	375	500	1000	2500
Mg-Hardne	ss as CaCO ₃	371	mg/l	В	290	420	840	2057
Chloride as	s Cl ⁻	737	mg/l	С	250	600	1200	1500-3000
Fluoride as	s F ⁻	2.0	mg/l	В	1.5	2.0	3.0	2.0-6.0
Sulphate as	s SO4 ²⁻	509	mg/l	В	200	600	1200	1000
Nitrate as N	N	12	mg/l	В	10	20	40	100
Nitrite as N	l	0.01	mg/l					10
Ammonium	n as N	<0.02	mg/l					
Sodium as	Na	677	mg/l	С	100	400	800	2000
Potassium	as K	29	mg/l	A	200	400	800	
Magnesium	n as Mg	90	mg/l	В	70	100	200	500
Calcium as	s Ca	156	mg/l	В	150	200	400	1000
Manganese	e as Mn	0.01	mg/l	А	0.05	1.0	2.0	10
Iron as Fe		0.04	mg/l	А	0.1	1.0	2.0	10
Stability pH	l, at 25°C	6.8						
Langelier li	ndex	0.5	scaling	:	>0=scaling, <0	ecorrosive, 0=st	able	

<6.5=scaling, >7,5=corrosive, >6.5 and <7.5=stable

Applies to water in the pH range 7-8

which also contains dissolved oxygen

ratios <0.2 no corrosive properties

ratios >0.2 increasing corrosive tendency

Ryznar Index

Corrosivity ratio

Approved Technical Signatory Ms. Manuela Mayer

This test report is only valid without any alterations and shall not be published or reproduced except in full, with written consent of the laboratory. Page 1 of 3

increasing corrosive tendency

6.2

4.0

scaling

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Remark:

Overall classification of water, considering only constituents that have been tested for: Group D: high risk or water unsuitable for human consumption

Interpretation based on guidelines for the evaluation of drinking water for human consumption, DWA, Namibia, April 1988 and South African Water Quality Guidelines Volume 5: Agricultural water use: Livestock watering, Second Edition, 1996

For practical reasons, the guidelines are divided into four groups. The highest group assigned to any of the constituents determines the classification of the water as a whole. Group A: excellent quality water Group B: good quality water Group C: low risk water Group D: high risk or water unsuitable for human consumption

Ideally water should be either Group A or Group B. If water is classified as Group C, the situation is not yet critical, but attention should be given to those constituents over the Group B limit. If however, the water is classified as Group D urgent and immediate attention is required to reduce the levels of the problem constituents in the water to suitable levels.

Sample acceptance:Sample was collected in bottles provided by the laboratory.
Sample was suitable for testing

Approved Technical Signatory

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Assessment of water quality for human consumption

Naturally occurring chemicals that are of health significance in drinking water

Fluoride: Exposure to high levels of fluoride, which occurs naturally, can lead to mottling of teeth and, in severe cases, crippling skeletal fluorosis.

1.5-3.5 mg/l fluoride: the threshold for marked dental mottling with associated tooth damage due to softening of enamel is 1.5mg/L. Above this, mottling and tooth damage will probably be noticeable in most continuous users of the water. No other health effects occur.

Chemicals from agricultural activities that are of health significance in drinking water

Nitrate and nitrite: In water it has been associated with methaemoglobinaemia, especially in bottle-fed infants 10-20 mg/l nitrate as N: methhaemoglobinaemia may occur in infants. No effects in adults.

Some of the naturally occurring chemicals which occur in drinking water at concentrations below those at which toxic effects may occur.

Chloride: high concentrations of chloride give a salty taste to water. Concentrations in excess of 250 mg/l are increasingly likely to be detected by taste.

Hardness: Depending on the interaction of other factors, such as, pH and alkalinity, water with a hardness above approximately 200 mg/l may cause scale deposition in the pipe work and tanks. On heating, hard waters form deposits of calcium carbonate scale.

pH: Optimum pH 6.5-8.

pH does not exert direct health effects, but may exert indirect health effects via metal solubility.

Sodium: The average taste threshold for sodium is about 200 mg/l.

Sulphate: It is generally considered that the taste impairment is minimal at levels below 250 mg/l.

Magnesium: The average taste threshold for magnesium is about 70 mg/l

Total dissolved solids: The palatability of water with a TDS level of less than 600 mg/l is generally considered to be good; drinking water becomes significantly and increasingly unpalatable at TDS levels greater than about 1000 mg/l.

Turbidity is a measure of the light-scattering ability of water and is indicative of the concentration of suspended matter in water.

Microorganisms are often associated with turbidity, hence low turbidity minimises the potential for transmission of infectious diseases. Turbidity also affects the aesthetic quality of water.

Turbidity in water is caused by the presence of suspended matter which usually consists of a mixture of inorganic matter, such as clay and soil particles and organic matter.

Turbidity may also be associated with the presence of inorganic ions such as manganese(II) and iron(II). The consumption of turbid water *per se* does not have any direct health effects, but associated effects due

to microbial contamination or the ingestion of substances bound to particulate matter, do.

Aesthetic effects (appearance, taste, odour) of turbidity can be mitigated or removed by decantation or by filtration (or by both), accelerated, if necessary, by previous aeration

Approved Technical Signatory Ms. Manuela Mayer This test report is only valid without a

Walvis Bay:

walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

TEST REPORT

To:	Digby Wells Environ	onmental SA (P	Pty) Ltd.					
	48 Grosvenor Road			Dat	e received:	26/Jan/22		
	Brtanston 2191			Date	e analysed:	8 February -	28 March 202	22
	South Africa			Dat	e reported:	29/Mar/22		
Attn:	Ms Megan Edwards			Client Refe	erence no.:	AFT-7220		
e-mail:	megan.edwards@dig	bywells.com		Que	otation no.:	QU-6835		
Tel:	+27 11 789 9495			Lab	Reference:	1220280		
				Enq	uiries: Ms N	lanuela Mayer		
Sample det	ails	borehole wate	er					
Location of	f sampling point	Uis, Afritin mir	ne					
Description	n of sampling point	BH9-2						
Date of san	npling	2022/01/07; 20:	:00					
Test item n	umber	1220280/12						
					R	ecommended	maximum li	imits
					Hu	iman consum	ption	Livestock
Parameter		Value	Units	Classification	Group A	Group B	Group C	watering
рН		7.3		A	6-9	5.5-9.5	4-11	
Electrical C	Conductivity	428	mS/m	D	150	300	400	
Turbidity		0.25	NTU	A	1	5	10	
Total Disso	olved Solids (calc.)	2556	mg/l					6000
P-Alkalinity	$/ as CaCO_3$	0	mg/l					
Total Alkali	inity as CaCO ₃	395	mg/l					
Total Hardr	ness as CaCO ₃	775	mg/l	С	300	650	1300	
Ca-Hardnes	ss as $CaCO_3$	405	mg/l	В	375	500	1000	2500
Mg-Hardne	ss as CaCO₃	371	mg/l	В	290	420	840	2057
Chloride as	s Cl ⁻	830	mg/l	С	250	600	1200	1500-3000
Fluoride as	F	2.1	mg/l	С	1.5	2.0	3.0	2.0-6.0
Sulphate as	s SO ₄ ²⁻	504	mg/l	В	200	600	1200	1000
Nitrate as N	N	12	mg/l	В	10	20	40	100
Nitrite as N		0.01	mg/l					10
Ammonium	n as N	<0.02	mg/l					
Sodium as	Na	650	mg/l	С	100	400	800	2000
Potassium	as K	28	mg/l	A	200	400	800	
Magnesium	n as Mg	90	mg/l	В	70	100	200	500
Calcium as	Ca	162	mg/l	В	150	200	400	1000
Manganese	e as Mn	<0.01	mg/l	A	0.05	1.0	2.0	10
Iron as Fe		0.01	mg/l	A	0.1	1.0	2.0	10
Stability pH	l, at 25°C	6.7						
Langelier Index		0.6	scaling	:	>0=scaling, <	0=corrosive, 0=st	able	
Ryznar Inde	ex	6.2	scaling		<6.5=scaling,	>7,5=corrosive, 2	<u>></u> 6.5 and <u><</u> 7.5=s	stable

increasing corrosive tendency

4.3

Applies to water in the pH range 7-8

which also contains dissolved oxygen

ratios <0.2 no corrosive properties

ratios >0.2 increasing corrosive tendency

Corrosivity ratio

Approved Technical Signatory Ms. Manuela Mayer

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Remark:

Overall classification of water, considering only constituents that have been tested for: Group D: high risk or water unsuitable for human consumption

Interpretation based on guidelines for the evaluation of drinking water for human consumption, DWA, Namibia, April 1988 and South African Water Quality Guidelines Volume 5: Agricultural water use: Livestock watering, Second Edition, 1996

For practical reasons, the guidelines are divided into four groups. The highest group assigned to any of the constituents determines the classification of the water as a whole. Group A: excellent quality water Group B: good quality water Group C: low risk water Group D: high risk or water unsuitable for human consumption

Ideally water should be either Group A or Group B. If water is classified as Group C, the situation is not yet critical, but attention should be given to those constituents over the Group B limit. If however, the water is classified as Group D urgent and immediate attention is required to reduce the levels of the problem constituents in the water to suitable levels.

Sample acceptance:Sample was collected in bottles provided by the laboratory.
Sample was suitable for testing

Approved Technical Signatory

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Assessment of water quality for human consumption

Naturally occurring chemicals that are of health significance in drinking water

Fluoride: Exposure to high levels of fluoride, which occurs naturally, can lead to mottling of teeth and, in severe cases, crippling skeletal fluorosis.

1.5-3.5 mg/l fluoride: the threshold for marked dental mottling with associated tooth damage due to softening of enamel is 1.5mg/L. Above this, mottling and tooth damage will probably be noticeable in most continuous users of the water. No other health effects occur.

Chemicals from agricultural activities that are of health significance in drinking water

Nitrate and nitrite: In water it has been associated with methaemoglobinaemia, especially in bottle-fed infants 10-20 mg/l nitrate as N: methhaemoglobinaemia may occur in infants. No effects in adults.

Some of the naturally occurring chemicals which occur in drinking water at concentrations below those at which toxic effects may occur.

Chloride: high concentrations of chloride give a salty taste to water. Concentrations in excess of 250 mg/l are increasingly likely to be detected by taste.

Hardness: Depending on the interaction of other factors, such as, pH and alkalinity, water with a hardness above approximately 200 mg/l may cause scale deposition in the pipe work and tanks. On heating, hard waters form deposits of calcium carbonate scale.

pH: Optimum pH 6.5-8.

pH does not exert direct health effects, but may exert indirect health effects via metal solubility.

Sodium: The average taste threshold for sodium is about 200 mg/l.

Sulphate: It is generally considered that the taste impairment is minimal at levels below 250 mg/l.

Magnesium: The average taste threshold for magnesium is about 70 mg/l

Total dissolved solids: The palatability of water with a TDS level of less than 600 mg/l is generally considered to be good; drinking water becomes significantly and increasingly unpalatable at TDS levels greater than about 1000 mg/l.

Turbidity is a measure of the light-scattering ability of water and is indicative of the concentration of suspended matter in water.

Microorganisms are often associated with turbidity, hence low turbidity minimises the potential for transmission of infectious diseases. Turbidity also affects the aesthetic quality of water.

Turbidity in water is caused by the presence of suspended matter which usually consists of a mixture of inorganic matter, such as clay and soil particles and organic matter.

Turbidity may also be associated with the presence of inorganic ions such as manganese(II) and iron(II). The consumption of turbid water *per se* does not have any direct health effects, but associated effects due

to microbial contamination or the ingestion of substances bound to particulate matter, do.

Aesthetic effects (appearance, taste, odour) of turbidity can be mitigated or removed by decantation or by filtration (or by both), accelerated, if necessary, by previous aeration

Approved Technical Signatory Ms. Manuela Mayer This test report is only valid without a

Walvis Bay:

walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

TEST REPORT

To:	Digby Wells Environ	onmental SA (P	Pty) Ltd.						
	48 Grosvenor Road			Dat	e received:	26/Jan/22			
	Brtanston 2191			Date	e analysed:	8 February -	28 March 20	22	
	South Africa			Dat	e reported:	29/Mar/22			
Attn:	Ms Megan Edwards			Client Ref	erence no.:	AFT-7220			
e-mail:	megan.edwards@dig	bywells.com		Que	otation no.:	QU-6835			
Tel:	+27 11 789 9495	,		Lab	Reference:	1220280			
-				Enq	uiries: Ms N	lanuela Mayer			
Sample det	ails	borehole wate	er						
Location of	f sampling point	Uis, Afritin mir	ne						
Description	n of sampling point	BH9-3							
Date of san	npling	2022/01/08; 20:	:00						
Test item n	umber	1220280/13							
					R	ecommended	commended maximum limits nan consumption Livesto Group B Group C waterin 5.5-9.5 4-11 300 400 5 10 6000		
					Hu	iman consum	ption	Livestock	
Parameter		Value	Units	Classification	Group A	Group B	Group C	watering	
рН		7.7		A	6-9	5.5-9.5	4-11		
Electrical C	Conductivity	437	mS/m	D	150	300	400		
Turbidity		0.25	NTU	A	1	5	10		
Total Disso	olved Solids (calc.)	2583	mg/l					6000	
P-Alkalinity	/ as CaCO₃	0	mg/l						
Total Alkali	inity as CaCO ₃	365	mg/l						
Total Hardr	ness as CaCO ₃	748	mg/l	С	300	650	1300		
Ca-Hardnes	ss as CaCO₃	365	mg/l	А	375	500	1000	2500	
Mg-Hardne	ss as CaCO ₃	383	mg/l	В	290	420	840	2057	
Chloride as	s Cl ⁻	853	mg/l	С	250	600	1200	1500-3000	
Fluoride as	F	2.0	mg/l	В	1.5	2.0	3.0	2.0-6.0	
Sulphate as	s SO4 ²⁻	523	mg/l	В	200	600	1200	1000	
Nitrate as N	1	12	mg/l	В	10	20	40	100	
Nitrite as N	l	0.01	mg/l					10	
Ammonium	n as N	<0.02	mg/l						
Sodium as	Na	665	mg/l	С	100	400	800	2000	
Potassium	as K	29	mg/l	А	200	400	800		
Magnesium	n as Mg	93	mg/l	В	70	100	200	500	
Calcium as	Ca	146	mg/l	А	150	200	400	1000	
Manganese	e as Mn	<0.01	mg/l	А	0.05	1.0	2.0	10	
Iron as Fe		0.02	mg/l	А	0.1	1.0	2.0	10	
Stability pH	l, at 25°C	6.8							
Langelier Index		0.9	scaling	:	>0=scaling, <	0=corrosive, 0=st	able		
Ryznar Inde	ex	5.9	scaling		<6.5=scaling,	>7,5=corrosive,	<u>></u> 6.5 and <u><</u> 7.5=	stable	

increasing corrosive tendency

4.8

Applies to water in the pH range 7-8

which also contains dissolved oxygen

ratios <0.2 no corrosive properties

ratios >0.2 increasing corrosive tendency

Corrosivity ratio

Approved Technical Signatory Ms. Manuela Mayer

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Remark:

Overall classification of water, considering only constituents that have been tested for: Group D: high risk or water unsuitable for human consumption

Interpretation based on guidelines for the evaluation of drinking water for human consumption, DWA, Namibia, April 1988 and South African Water Quality Guidelines Volume 5: Agricultural water use: Livestock watering, Second Edition, 1996

For practical reasons, the guidelines are divided into four groups. The highest group assigned to any of the constituents determines the classification of the water as a whole. Group A: excellent quality water Group B: good quality water Group C: low risk water Group D: high risk or water unsuitable for human consumption

Ideally water should be either Group A or Group B. If water is classified as Group C, the situation is not yet critical, but attention should be given to those constituents over the Group B limit. If however, the water is classified as Group D urgent and immediate attention is required to reduce the levels of the problem constituents in the water to suitable levels.

Sample acceptance:Sample was collected in bottles provided by the laboratory.
Sample was suitable for testing

Approved Technical Signatory

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Assessment of water quality for human consumption

Naturally occurring chemicals that are of health significance in drinking water

Fluoride: Exposure to high levels of fluoride, which occurs naturally, can lead to mottling of teeth and, in severe cases, crippling skeletal fluorosis.

1.5-3.5 mg/l fluoride: the threshold for marked dental mottling with associated tooth damage due to softening of enamel is 1.5mg/L. Above this, mottling and tooth damage will probably be noticeable in most continuous users of the water. No other health effects occur.

Chemicals from agricultural activities that are of health significance in drinking water

Nitrate and nitrite: In water it has been associated with methaemoglobinaemia, especially in bottle-fed infants 10-20 mg/l nitrate as N: methhaemoglobinaemia may occur in infants. No effects in adults.

Some of the naturally occurring chemicals which occur in drinking water at concentrations below those at which toxic effects may occur.

Chloride: high concentrations of chloride give a salty taste to water. Concentrations in excess of 250 mg/l are increasingly likely to be detected by taste.

Hardness: Depending on the interaction of other factors, such as, pH and alkalinity, water with a hardness above approximately 200 mg/l may cause scale deposition in the pipe work and tanks. On heating, hard waters form deposits of calcium carbonate scale.

pH: Optimum pH 6.5-8.

pH does not exert direct health effects, but may exert indirect health effects via metal solubility.

Sodium: The average taste threshold for sodium is about 200 mg/l.

Sulphate: It is generally considered that the taste impairment is minimal at levels below 250 mg/l.

Magnesium: The average taste threshold for magnesium is about 70 mg/l

Total dissolved solids: The palatability of water with a TDS level of less than 600 mg/l is generally considered to be good; drinking water becomes significantly and increasingly unpalatable at TDS levels greater than about 1000 mg/l.

Turbidity is a measure of the light-scattering ability of water and is indicative of the concentration of suspended matter in water.

Microorganisms are often associated with turbidity, hence low turbidity minimises the potential for transmission of infectious diseases. Turbidity also affects the aesthetic quality of water.

Turbidity in water is caused by the presence of suspended matter which usually consists of a mixture of inorganic matter, such as clay and soil particles and organic matter.

Turbidity may also be associated with the presence of inorganic ions such as manganese(II) and iron(II). The consumption of turbid water *per se* does not have any direct health effects, but associated effects due

to microbial contamination or the ingestion of substances bound to particulate matter, do.

Aesthetic effects (appearance, taste, odour) of turbidity can be mitigated or removed by decantation or by filtration (or by both), accelerated, if necessary, by previous aeration

Approved Technical Signatory Ms. Manuela Mayer This test report is only valid without a

Walvis Bay:

walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

TEST REPORT

To:	Digby Wells Envir	onmental SA (P	ty) Ltd.					
	48 Grosvenor Road			Dat	e received:	26/Jan/22		
	Brtanston 2191			Date	e analysed:	8 February -	28 March 202	22
	South Africa			Dat	e reported:	29/Mar/22		
Attn:	Ms Megan Edwards			Client Refe	erence no.:	AFT-7220		
e-mail:	megan.edwards@dig	bywells.com		Que	otation no.:	QU-6835		
Tel:	+27 11 789 9495			Lab	Reference:	1220280		
				Enq	uiries: Ms N	lanuela Mayer		
Sample det	tails	borehole water	r					
Location of	f sampling point	Uis, Afritin mine	е					
Description	n of sampling point	BH9-4						
Date of san	npling	2022/01/09; 20:0	00					
Test item n	umber	1220280/14						
					R	ecommended	maximum li	imits
					Hu	iman consum	ption	Livestock
Parameter		Value	Units	Classification	Group A	Group B	Group C	watering
рН		7.2	a /	A	6-9	5.5-9.5	4-11	
Electrical C	conductivity	453	mS/m	D	150	300	400	
Turbidity		0.30	NTU	A	1	5	10	
Total Disso	olved Solids (calc.)	2605	mg/l					6000
P-Alkalinity	/ as CaCO ₃	0	mg/l					
Total Alkali	inity as CaCO ₃	395	mg/l	-				
Total Hardr	ness as CaCO ₃	856	mg/l	С	300	650	1300	
Ca-Hardnes	ss as $CaCO_3$	444	mg/l	В	375	500	1000	2500
Mg-Hardne	ss as CaCO ₃	412	mg/l	В	290	420	840	2057
Chloride as		853	mg/l	С	250	600	1200	1500-3000
Fluoride as	s F [*]	2.1	mg/l	С	1.5	2.0	3.0	2.0-6.0
Sulphate as	s SO ₄ ²⁻	485	mg/l	В	200	600	1200	1000
Nitrate as N	N	13	mg/l	В	10	20	40	100
Nitrite as N		0.01	mg/l					10
Ammonium	n as N	<0.02	mg/l					
Sodium as	Na	662	mg/l	С	100	400	800	2000
Potassium	as K	30	mg/l	A	200	400	800	
Magnesium	n as Mg	100	mg/l	В	70	100	200	500
Calcium as	s Ca	178	mg/l	В	150	200	400	1000
Manganese	e as Mn	<0.01	mg/l	Α	0.05	1.0	2.0	10
Iron as Fe		0.01	mg/l	Α	0.1	1.0	2.0	10
Stability pH	l, at 25°C	6.7						
Langelier Index		0.5	scaling	:	>0=scaling, <	0=corrosive, 0=st	able	
Ryznar Inde	ex	6.2	scaling		<6.5=scaling,	>7,5=corrosive, 2	<u>></u> 6.5 and <u><</u> 7.5=	stable

increasing corrosive tendency

4.3

Applies to water in the pH range 7-8

which also contains dissolved oxygen

ratios <0.2 no corrosive properties

ratios >0.2 increasing corrosive tendency

Corrosivity ratio

Approved Technical Signatory Ms. Manuela Mayer

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Remark:

Overall classification of water, considering only constituents that have been tested for: Group D: high risk or water unsuitable for human consumption

Interpretation based on guidelines for the evaluation of drinking water for human consumption, DWA, Namibia, April 1988 and South African Water Quality Guidelines Volume 5: Agricultural water use: Livestock watering, Second Edition, 1996

For practical reasons, the guidelines are divided into four groups. The highest group assigned to any of the constituents determines the classification of the water as a whole. Group A: excellent quality water Group B: good quality water Group C: low risk water Group D: high risk or water unsuitable for human consumption

Ideally water should be either Group A or Group B. If water is classified as Group C, the situation is not yet critical, but attention should be given to those constituents over the Group B limit. If however, the water is classified as Group D urgent and immediate attention is required to reduce the levels of the problem constituents in the water to suitable levels.

Sample acceptance:Sample was collected in bottles provided by the laboratory.
Sample was suitable for testing

Approved Technical Signatory

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Assessment of water quality for human consumption

Naturally occurring chemicals that are of health significance in drinking water

Fluoride: Exposure to high levels of fluoride, which occurs naturally, can lead to mottling of teeth and, in severe cases, crippling skeletal fluorosis.

1.5-3.5 mg/l fluoride: the threshold for marked dental mottling with associated tooth damage due to softening of enamel is 1.5mg/L. Above this, mottling and tooth damage will probably be noticeable in most continuous users of the water. No other health effects occur.

Chemicals from agricultural activities that are of health significance in drinking water

Nitrate and nitrite: In water it has been associated with methaemoglobinaemia, especially in bottle-fed infants 10-20 mg/l nitrate as N: methhaemoglobinaemia may occur in infants. No effects in adults.

Some of the naturally occurring chemicals which occur in drinking water at concentrations below those at which toxic effects may occur.

Chloride: high concentrations of chloride give a salty taste to water. Concentrations in excess of 250 mg/l are increasingly likely to be detected by taste.

Hardness: Depending on the interaction of other factors, such as, pH and alkalinity, water with a hardness above approximately 200 mg/l may cause scale deposition in the pipe work and tanks. On heating, hard waters form deposits of calcium carbonate scale.

pH: Optimum pH 6.5-8.

pH does not exert direct health effects, but may exert indirect health effects via metal solubility.

Sodium: The average taste threshold for sodium is about 200 mg/l.

Sulphate: It is generally considered that the taste impairment is minimal at levels below 250 mg/l.

Magnesium: The average taste threshold for magnesium is about 70 mg/l

Total dissolved solids: The palatability of water with a TDS level of less than 600 mg/l is generally considered to be good; drinking water becomes significantly and increasingly unpalatable at TDS levels greater than about 1000 mg/l.

Turbidity is a measure of the light-scattering ability of water and is indicative of the concentration of suspended matter in water.

Microorganisms are often associated with turbidity, hence low turbidity minimises the potential for transmission of infectious diseases. Turbidity also affects the aesthetic quality of water.

Turbidity in water is caused by the presence of suspended matter which usually consists of a mixture of inorganic matter, such as clay and soil particles and organic matter.

Turbidity may also be associated with the presence of inorganic ions such as manganese(II) and iron(II). The consumption of turbid water *per se* does not have any direct health effects, but associated effects due

to microbial contamination or the ingestion of substances bound to particulate matter, do.

Aesthetic effects (appearance, taste, odour) of turbidity can be mitigated or removed by decantation or by filtration (or by both), accelerated, if necessary, by previous aeration

Approved Technical Signatory Ms. Manuela Mayer This test report is only valid without a

Walvis Bay:

walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

TEST REPORT

To:	Digby Wells Enviro	onmental SA (P	ty) Ltd.					
	48 Grosvenor Road			Dat	e received:	26/Jan/22		
	Brtanston 2191			Date	e analysed:	8 February -	28 March 20	22
	South Africa			Dat	e reported:	29/Mar/22		
Attn:	Ms Megan Edwards			Client Refe	erence no.:	AFT-7220		
e-mail:	megan.edwards@digl	bywells.com		Que	otation no.:	QU-6835		
Tel:	+27 11 789 9495			Lab	Reference:	1220280		
				Enq	uiries: Ms N	lanuela Mayer		
Sample det	ails	borehole water	ſ					
Location of	sampling point	Uis, Afritin mine	е					
Description	of sampling point	BH9-5						
Date of san	npling	2022/01/09; 21:0	00					
Test item n	umber	1220280/15						
					Re	ecommended	maximum li	imits
					Hu	man consum	ption	Livestock
Parameter		Value	Units	Classification	Group A	Group B	Group C	watering
рН		7.2		A	6-9	5.5-9.5	4-11	
Electrical C	conductivity	474	mS/m	D	150	300	400	
Turbidity		0.35	NTU	A	1	5	10	
Total Disso	lved Solids (calc.)	2864	mg/l					6000
P-Alkalinity	v as CaCO ₃	0	mg/l					
Total Alkali	nity as CaCO ₃	385	mg/l					
Total Hardr	ness as CaCO ₃	908	mg/l	С	300	650	1300	
Ca-Hardnes	ss as CaCO ₃	472	mg/l	В	375	500	1000	2500
Mg-Hardne	ss as $CaCO_3$	437	mg/l	С	290	420	840	2057
Chloride as	s Cl ⁻	876	mg/l	С	250	600	1200	1500-3000
Fluoride as	F	2.0	mg/l	В	1.5	2.0	3.0	2.0-6.0
Sulphate as	s SO ₄ ²⁻	678	mg/l	С	200	600	1200	1000
Nitrate as N	1	14	mg/l	В	10	20	40	100
Nitrite as N		0.02	mg/l					10
Ammonium	n as N	<0.02	mg/l					
Sodium as	Na	689	mg/l	С	100	400	800	2000
Potassium	as K	31	mg/l	A	200	400	800	
Magnesium	n as Mg	106	mg/l	С	70	100	200	500
Calcium as	Ca	189	mg/l	В	150	200	400	1000
Manganese	e as Mn	<0.01	mg/l	A	0.05	1.0	2.0	10
Iron as Fe		0.02	mg/l	A	0.1	1.0	2.0	10
Stability pH	l, at 25°C	6.7						
Langelier Ir	ndex	0.5	scaling	:	>0=scaling, <	0=corrosive, 0=st	able	
Ryznar Inde	ar Index 6.2 scaling <6.5=scaling, >7,5=corrosive, ≥6.5 and ≤7.5=				<u>∗</u> 6.5 and <u><</u> 7.5=€	stable		

increasing corrosive tendency

5.0

Applies to water in the pH range 7-8

which also contains dissolved oxygen

ratios <0.2 no corrosive properties

ratios >0.2 increasing corrosive tendency

Corrosivity ratio

Approved Technical Signatory Ms. Manuela Mayer

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Remark:

Overall classification of water, considering only constituents that have been tested for: Group D: high risk or water unsuitable for human consumption

Interpretation based on guidelines for the evaluation of drinking water for human consumption, DWA, Namibia, April 1988 and South African Water Quality Guidelines Volume 5: Agricultural water use: Livestock watering, Second Edition, 1996

For practical reasons, the guidelines are divided into four groups. The highest group assigned to any of the constituents determines the classification of the water as a whole. Group A: excellent quality water Group B: good quality water Group C: low risk water Group D: high risk or water unsuitable for human consumption

Ideally water should be either Group A or Group B. If water is classified as Group C, the situation is not yet critical, but attention should be given to those constituents over the Group B limit. If however, the water is classified as Group D urgent and immediate attention is required to reduce the levels of the problem constituents in the water to suitable levels.

Sample acceptance:Sample was collected in bottles provided by the laboratory.
Sample was suitable for testing

Approved Technical Signatory

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Assessment of water quality for human consumption

Naturally occurring chemicals that are of health significance in drinking water

Fluoride: Exposure to high levels of fluoride, which occurs naturally, can lead to mottling of teeth and, in severe cases, crippling skeletal fluorosis.

1.5-3.5 mg/l fluoride: the threshold for marked dental mottling with associated tooth damage due to softening of enamel is 1.5mg/L. Above this, mottling and tooth damage will probably be noticeable in most continuous users of the water. No other health effects occur.

Chemicals from agricultural activities that are of health significance in drinking water

Nitrate and nitrite: In water it has been associated with methaemoglobinaemia, especially in bottle-fed infants 10-20 mg/l nitrate as N: methhaemoglobinaemia may occur in infants. No effects in adults.

Some of the naturally occurring chemicals which occur in drinking water at concentrations below those at which toxic effects may occur.

Chloride: high concentrations of chloride give a salty taste to water. Concentrations in excess of 250 mg/l are increasingly likely to be detected by taste.

Hardness: Depending on the interaction of other factors, such as, pH and alkalinity, water with a hardness above approximately 200 mg/l may cause scale deposition in the pipe work and tanks. On heating, hard waters form deposits of calcium carbonate scale.

pH: Optimum pH 6.5-8.

pH does not exert direct health effects, but may exert indirect health effects via metal solubility.

Sodium: The average taste threshold for sodium is about 200 mg/l.

Sulphate: It is generally considered that the taste impairment is minimal at levels below 250 mg/l.

Magnesium: The average taste threshold for magnesium is about 70 mg/l

Total dissolved solids: The palatability of water with a TDS level of less than 600 mg/l is generally considered to be good; drinking water becomes significantly and increasingly unpalatable at TDS levels greater than about 1000 mg/l.

Turbidity is a measure of the light-scattering ability of water and is indicative of the concentration of suspended matter in water.

Microorganisms are often associated with turbidity, hence low turbidity minimises the potential for transmission of infectious diseases. Turbidity also affects the aesthetic quality of water.

Turbidity in water is caused by the presence of suspended matter which usually consists of a mixture of inorganic matter, such as clay and soil particles and organic matter.

Turbidity may also be associated with the presence of inorganic ions such as manganese(II) and iron(II). The consumption of turbid water *per se* does not have any direct health effects, but associated effects due

to microbial contamination or the ingestion of substances bound to particulate matter, do.

Aesthetic effects (appearance, taste, odour) of turbidity can be mitigated or removed by decantation or by filtration (or by both), accelerated, if necessary, by previous aeration

Approved Technical Signatory Ms. Manuela Mayer This test report is only valid without a

Walvis Bay:

walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

TEST REPORT

To:	Digby Wells Enviro	onmental SA (F	Pty) Ltd.					
	48 Grosvenor Road			Dat	e received:	26/Jan/22		
	Brtanston 2191			Date	e analysed:	8 February -	28 March 202	22
	South Africa			Dat	e reported:	29/Mar/22		
Attn:	Ms Megan Edwards			Client Refe	erence no.:	AFT-7220		
e-mail:	megan.edwards@dig	bywells.com		Que	otation no.:	QU-6835		
Tel:	+27 11 789 9495			Lab	Reference:	1220280		
				Enq	uiries: Ms N	lanuela Mayer		
Sample det	ails	borehole wate	er					
Location of	f sampling point	Uis, Afritin mir	ne					
Descriptior	n of sampling point	BH3-1						
Date of san	npling	2022/01/06; 19	:50					
Test item n	umber	1220280/16						
					R	ecommended	maximum li	imits
					Hu	iman consum	ption	Livestock
Parameter		Value	Units	Classification	Group A	Group B	Group C	watering
рН		7.0		A	6-9	5.5-9.5	4-11	
Electrical C	Conductivity	899	mS/m	D	150	300	400	
Turbidity		0.35	NTU	A	1	5	10	
Total Disso	olved Solids (calc.)	5505	mg/l					6000
P-Alkalinity	$/ as CaCO_3$	0	mg/l					
Total Alkali	inity as CaCO ₃	410	mg/l					
Total Hardr	ness as CaCO ₃	2344	mg/l	D	300	650	1300	
Ca-Hardnes	ss as $CaCO_3$	1146	mg/l	D	375	500	1000	2500
Mg-Hardne	ss as CaCO ₃	1198	mg/l	D	290	420	840	2057
Chloride as	s Cl ⁻	2166	mg/l	D	250	600	1200	1500-3000
Fluoride as	F	1.0	mg/l	A	1.5	2.0	3.0	2.0-6.0
Sulphate as	s SO ₄ ²⁻	1101	mg/l	С	200	600	1200	1000
Nitrate as N	N	5.8	mg/l	A	10	20	40	100
Nitrite as N		<0.01	mg/l					10
Ammonium	n as N	<0.02	mg/l					
Sodium as	Na	1160	mg/l	D	100	400	800	2000
Potassium	as K	55	mg/l	A	200	400	800	
Magnesium	n as Mg	291	mg/l	D	70	100	200	500
Calcium as	Ca	459	mg/l	D	150	200	400	1000
Manganese	e as Mn	<0.01	mg/l	A	0.05	1.0	2.0	10
Iron as Fe		0.01	mg/l	A	0.1	1.0	2.0	10
Stability pH	l, at 25°C	6.3						
Langelier Index		0.7	scaling	:	>0=scaling, <	0=corrosive, 0=st	able	
Ryznar Inde	ex	5.6	scaling		<6.5=scaling,	>7,5=corrosive,	<u>></u> 6.5 and <u><</u> 7.5=s	stable

increasing corrosive tendency

10.3

Applies to water in the pH range 7-8

which also contains dissolved oxygen

ratios <0.2 no corrosive properties

ratios >0.2 increasing corrosive tendency

Corrosivity ratio

Approved Technical Signatory Ms. Manuela Mayer

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Remark:

Overall classification of water, considering only constituents that have been tested for: Group D: high risk or water unsuitable for human consumption

Interpretation based on guidelines for the evaluation of drinking water for human consumption, DWA, Namibia, April 1988 and South African Water Quality Guidelines Volume 5: Agricultural water use: Livestock watering, Second Edition, 1996

For practical reasons, the guidelines are divided into four groups. The highest group assigned to any of the constituents determines the classification of the water as a whole. Group A: excellent quality water Group B: good quality water Group C: low risk water Group D: high risk or water unsuitable for human consumption

Ideally water should be either Group A or Group B. If water is classified as Group C, the situation is not yet critical, but attention should be given to those constituents over the Group B limit. If however, the water is classified as Group D urgent and immediate attention is required to reduce the levels of the problem constituents in the water to suitable levels.

Sample acceptance:Sample was collected in bottles provided by the laboratory.
Sample was suitable for testing

Approved Technical Signatory

Analytical Laboratory Services

Windhoek: info@analab.com.na Tel +264 61 210 132 Cell +264 81 611 8843 71 Newcastle Street

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Assessment of water quality for human consumption

Naturally occurring chemicals that are of health significance in drinking water

Fluoride: Exposure to high levels of fluoride, which occurs naturally, can lead to mottling of teeth and, in severe cases, crippling skeletal fluorosis.

0-1.0 mg/l fluoride: no adverse health effects or tooth damage occurs

Chemicals from agricultural activities that are of health significance in drinking water Nitrate and nitrite: In water it has been associated with methaemoglobinaemia, especially in bottle-fed infants 0-6 mg/l nitrate as N: no adverse health effects

Some of the naturally occurring chemicals which occur in drinking water at concentrations below those at which toxic effects may occur.

Chloride: high concentrations of chloride give a salty taste to water. Concentrations in excess of 250 mg/l are increasingly likely to be detected by taste.

Hardness: Depending on the interaction of other factors, such as, pH and alkalinity, water with a hardness above approximately 200 mg/l may cause scale deposition in the pipe work and tanks. On heating, hard waters form deposits of calcium carbonate scale.

pH: Optimum pH 6.5-8.

pH does not exert direct health effects, but may exert indirect health effects via metal solubility.

Sodium: The average taste threshold for sodium is about 200 mg/l.

Sulphate: It is generally considered that the taste impairment is minimal at levels below 250 mg/l.

Magnesium: The average taste threshold for magnesium is about 70 mg/l

Total dissolved solids: The palatability of water with a TDS level of less than 600 mg/l is generally considered to be good; drinking water becomes significantly and increasingly unpalatable at TDS levels greater than about 1000 mg/l.

Turbidity is a measure of the light-scattering ability of water and is indicative of the concentration of suspended matter in water.

Microorganisms are often associated with turbidity, hence low turbidity minimises the potential for transmission of infectious diseases. Turbidity also affects the aesthetic quality of water.

Turbidity in water is caused by the presence of suspended matter which usually consists of a mixture of inorganic matter, such as clay and soil particles and organic matter.

Turbidity may also be associated with the presence of inorganic ions such as manganese(II) and iron(II).

The consumption of turbid water *per se* does not have any direct health effects, but associated effects due to microbial contamination or the ingestion of substances bound to particulate matter, do.

Aesthetic effects (appearance, taste, odour) of turbidity can be mitigated or removed by decantation or by filtration (or by both), accelerated, if necessary, by previous aeration

Approved Technical Signatory Ms. Manuela Mayer This test report is only valid without an

Walvis Bay:

walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

TEST REPORT

To:	Digby Wells Enviro	nmental SA (Pty) Ltd.					
	48 Grosvenor Road			Dat	e received:	26/Jan/22		
	Brtanston 2191			Date	e analysed:	8 February - 2	28 March 20	22
	South Africa			Dat	e reported:	29/Mar/22		
Attn:	Ms Megan Edwards			Client Refe	erence no.:	AFT-7220		
e-mail:	megan.edwards@digb	ywells.com		Que	otation no.:	QU-6835		
Tel:	+27 11 789 9495			Lab	Reference:	1220280		
				Enq	uiries: Ms M	lanuela Mayer		
Sample det	ails	borehole water						
Location of	sampling point	Uis, Afritin mine						
Description	of sampling point	BH3-2						
Date of san	npling	2022/01/7; 18:00						
Test item n	umber	1220280/17						
					Re	ecommended	maximum li	mits
					Hu	man consum	otion	Livestock
Parameter		Value	Units	Classification	Group A	Group B	Group C	watering
рН		7.0		A	6-9	5.5-9.5	4-11	
Electrical C	conductivity	888	mS/m	D	150	300	400	
Turbidity		0.30	NTU	A	1	5	10	
Total Disso	lved Solids (calc.)	5416	mg/l					6000
P-Alkalinity	as CaCO ₃	0	mg/l					
Total Alkali	nity as CaCO ₃	400	mg/l	_				
Total Hardr	ness as CaCO ₃	2377	mg/l	D	300	650	1300	
Ca-Hardnes	ss as $CaCO_3$	1166	mg/l	D	375	500	1000	2500
Mg-Hardne	ss as CaCO ₃	1211	mg/l	D	290	420	840	2057
Chloride as		2120	mg/l	D	250	600	1200	1500-3000
Fluoride as	F	0.9	mg/l	A	1.5	2.0	3.0	2.0-6.0
Sulphate as	s SO ₄ ²⁻	1057	mg/l	С	200	600	1200	1000
Nitrate as N	1	5.6	mg/l	A	10	20	40	100
Nitrite as N		<0.01	mg/l					10
Ammonium	n as N	<0.02	mg/l					
Sodium as	Na	1159	mg/l	D	100	400	800	2000
Potassium	as K	53	mg/l	A	200	400	800	
Magnesium	n as Mg	294	mg/l	D	70	100	200	500
Calcium as	Ca	467	mg/l	D	150	200	400	1000
Manganese	e as Mn	<0.01	mg/l	A	0.05	1.0	2.0	10
Iron as Fe		0.02	mg/l	A	0.1	1.0	2.0	10
Stability pH	l, at 25°C	6.3						
Langelier Index 0.7 scaling			>0=scaling, <(0=corrosive, 0=sta	able			
Ryznar Inde	ex	5.6 sc	aling		<6.5=scaling,	$>7,5=corrosive, \ge$	<u>6.5 and <</u> 7.5=6	stable

increasing corrosive tendency

10.2

Applies to water in the pH range 7-8

which also contains dissolved oxygen

ratios <0.2 no corrosive properties

ratios >0.2 increasing corrosive tendency

Corrosivity ratio

Approved Technical Signatory Ms. Manuela Mayer

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Remark:

Overall classification of water, considering only constituents that have been tested for: Group D: high risk or water unsuitable for human consumption

Interpretation based on guidelines for the evaluation of drinking water for human consumption, DWA, Namibia, April 1988 and South African Water Quality Guidelines Volume 5: Agricultural water use: Livestock watering, Second Edition, 1996

For practical reasons, the guidelines are divided into four groups. The highest group assigned to any of the constituents determines the classification of the water as a whole. Group A: excellent quality water Group B: good quality water Group C: low risk water Group D: high risk or water unsuitable for human consumption

Ideally water should be either Group A or Group B. If water is classified as Group C, the situation is not yet critical, but attention should be given to those constituents over the Group B limit. If however, the water is classified as Group D urgent and immediate attention is required to reduce the levels of the problem constituents in the water to suitable levels.

Sample acceptance:Sample was collected in bottles provided by the laboratory.
Sample was suitable for testing

Approved Technical Signatory

Analytical Laboratory Services

Windhoek: info@analab.com.na Tel +264 61 210 132 Cell +264 81 611 8843 71 Newcastle Street

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Assessment of water quality for human consumption

Naturally occurring chemicals that are of health significance in drinking water

Fluoride: Exposure to high levels of fluoride, which occurs naturally, can lead to mottling of teeth and, in severe cases, crippling skeletal fluorosis.

0-1.0 mg/l fluoride: no adverse health effects or tooth damage occurs

Chemicals from agricultural activities that are of health significance in drinking water Nitrate and nitrite: In water it has been associated with methaemoglobinaemia, especially in bottle-fed infants 0-6 mg/l nitrate as N: no adverse health effects

Some of the naturally occurring chemicals which occur in drinking water at concentrations below those at which toxic effects may occur.

Chloride: high concentrations of chloride give a salty taste to water. Concentrations in excess of 250 mg/l are increasingly likely to be detected by taste.

Hardness: Depending on the interaction of other factors, such as, pH and alkalinity, water with a hardness above approximately 200 mg/l may cause scale deposition in the pipe work and tanks. On heating, hard waters form deposits of calcium carbonate scale.

pH: Optimum pH 6.5-8.

pH does not exert direct health effects, but may exert indirect health effects via metal solubility.

Sodium: The average taste threshold for sodium is about 200 mg/l.

Sulphate: It is generally considered that the taste impairment is minimal at levels below 250 mg/l.

Magnesium: The average taste threshold for magnesium is about 70 mg/l

Total dissolved solids: The palatability of water with a TDS level of less than 600 mg/l is generally considered to be good; drinking water becomes significantly and increasingly unpalatable at TDS levels greater than about 1000 mg/l.

Turbidity is a measure of the light-scattering ability of water and is indicative of the concentration of suspended matter in water.

Microorganisms are often associated with turbidity, hence low turbidity minimises the potential for transmission of infectious diseases. Turbidity also affects the aesthetic quality of water.

Turbidity in water is caused by the presence of suspended matter which usually consists of a mixture of inorganic matter, such as clay and soil particles and organic matter.

Turbidity may also be associated with the presence of inorganic ions such as manganese(II) and iron(II).

The consumption of turbid water *per se* does not have any direct health effects, but associated effects due to microbial contamination or the ingestion of substances bound to particulate matter, do.

Aesthetic effects (appearance, taste, odour) of turbidity can be mitigated or removed by decantation or by filtration (or by both), accelerated, if necessary, by previous aeration

Approved Technical Signatory Ms. Manuela Mayer This test report is only valid without an

Walvis Bay:

walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

TEST REPORT

To:	Digby Wells Environ	onmental SA (F	Pty) Ltd.					
	48 Grosvenor Road			Dat	e received:	26/Jan/22		
	Brtanston 2191			Date	e analysed:	8 February -	28 March 20	22
	South Africa			Dat	e reported:	29/Mar/22		
Attn:	Ms Megan Edwards			Client Ref	erence no.:	AFT-7220		
e-mail:	megan.edwards@dig	bywells.com		Que	otation no.:	QU-6835		
Tel:	+27 11 789 9495			Lab	Reference:	1220280		
				Enq	uiries: Ms N	1anuela Mayer		
Sample det	ails	borehole wate	er					
Location of	f sampling point	Uis, Afritin mir	ne					
Description	n of sampling point	BH3-3						
Date of san	npling	2022/01/09; 18	:00					
Test item n	umber	1220280/18						
					R	ecommended	maximum li	imits
_					Hu	iman consum	ption	Livestock
Parameter		Value	Units	Classification	Group A	Group B	Group C	watering
рН	Sec. 1	7.0	0 /	A	6-9	5.5-9.5	4-11	
Electrical C	conductivity	884	mS/m	D	150	300	400	
Turbidity	luced Oalida (aala)	0.30	NIU 	A	I	5	10	C000
Total Disso	lived Solids (calc.)	5434	mg/I					6000
P-Alkalinity	$/ as CaCO_3$	0	mg/I					
Total Alkali	$\frac{1}{2}$	400	mg/i	D	200	650	1200	
	less as $CaCO_3$	2372	mg/i	D	300	630 500	1000	2500
Ma-Hardno	as as $CaCO_3$	101	mg/l	D	200	300 420	840	2007
Oblarida as		1211	mg/l	D	290	420	1200	1500 2000
Chioride as		2145	mg/l	Δ	15	2.0	3.0	20-60
Fluoride as		1062	mg/l	C C	200	2.0 600	1200	1000
Nitrato as N	S 30 ₄	5.8	mg/l	Δ	10	20	40	1000
Nitrite as N	•	-0.01	ma/l	Л	10	20	-10	100
Ammonium	n as N	<0.01	ma/l					10
Sodium as	Na	1149	ma/l	D	100	400	800	2000
Potassium	as K	54	ma/l	A	200	400	800	2000
Magnesium	n as Mg	294	ma/l	D	70	100	200	500
Calcium as	Ca	465	ma/l	D	150	200	400	1000
Manganese	e as Mn	0.01	ma/l	Ā	0.05	1.0	2.0	10
Iron as Fe		0.03	ma/l	А	0.1	1.0	2.0	10
Stability pl	l, at 25°C	6.3	- 3			-	-	-
Langelier li	ndex	0.7	scaling	:	>0=scaling, <	0=corrosive, 0=s	table	
Ryznar Inde	ex	5.6	scaling		<6.5=scaling,	>7,5=corrosive,	≥6.5 and <u><</u> 7.5=€	stable

increasing corrosive tendency

10.3

<6.5=scaling, >7,5=corrosive, ≥6.5 and ≤7.5=stable

Applies to water in the pH range 7-8

which also contains dissolved oxygen

ratios <0.2 no corrosive properties

ratios >0.2 increasing corrosive tendency

Corrosivity ratio

Approved Technical Signatory Ms. Manuela Mayer

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Remark:

Overall classification of water, considering only constituents that have been tested for: Group D: high risk or water unsuitable for human consumption

Interpretation based on guidelines for the evaluation of drinking water for human consumption, DWA, Namibia, April 1988 and South African Water Quality Guidelines Volume 5: Agricultural water use: Livestock watering, Second Edition, 1996

For practical reasons, the guidelines are divided into four groups. The highest group assigned to any of the constituents determines the classification of the water as a whole. Group A: excellent quality water Group B: good quality water Group C: low risk water Group D: high risk or water unsuitable for human consumption

Ideally water should be either Group A or Group B. If water is classified as Group C, the situation is not yet critical, but attention should be given to those constituents over the Group B limit. If however, the water is classified as Group D urgent and immediate attention is required to reduce the levels of the problem constituents in the water to suitable levels.

Sample acceptance:Sample was collected in bottles provided by the laboratory.
Sample was suitable for testing

Approved Technical Signatory

Analytical Laboratory Services

Windhoek: info@analab.com.na Tel +264 61 210 132 Cell +264 81 611 8843 71 Newcastle Street

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Assessment of water quality for human consumption

Naturally occurring chemicals that are of health significance in drinking water

Fluoride: Exposure to high levels of fluoride, which occurs naturally, can lead to mottling of teeth and, in severe cases, crippling skeletal fluorosis.

0-1.0 mg/l fluoride: no adverse health effects or tooth damage occurs

Chemicals from agricultural activities that are of health significance in drinking water Nitrate and nitrite: In water it has been associated with methaemoglobinaemia, especially in bottle-fed infants 0-6 mg/l nitrate as N: no adverse health effects

Some of the naturally occurring chemicals which occur in drinking water at concentrations below those at which toxic effects may occur.

Chloride: high concentrations of chloride give a salty taste to water. Concentrations in excess of 250 mg/l are increasingly likely to be detected by taste.

Hardness: Depending on the interaction of other factors, such as, pH and alkalinity, water with a hardness above approximately 200 mg/l may cause scale deposition in the pipe work and tanks. On heating, hard waters form deposits of calcium carbonate scale.

pH: Optimum pH 6.5-8.

pH does not exert direct health effects, but may exert indirect health effects via metal solubility.

Sodium: The average taste threshold for sodium is about 200 mg/l.

Sulphate: It is generally considered that the taste impairment is minimal at levels below 250 mg/l.

Magnesium: The average taste threshold for magnesium is about 70 mg/l

Total dissolved solids: The palatability of water with a TDS level of less than 600 mg/l is generally considered to be good; drinking water becomes significantly and increasingly unpalatable at TDS levels greater than about 1000 mg/l.

Turbidity is a measure of the light-scattering ability of water and is indicative of the concentration of suspended matter in water.

Microorganisms are often associated with turbidity, hence low turbidity minimises the potential for transmission of infectious diseases. Turbidity also affects the aesthetic quality of water.

Turbidity in water is caused by the presence of suspended matter which usually consists of a mixture of inorganic matter, such as clay and soil particles and organic matter.

Turbidity may also be associated with the presence of inorganic ions such as manganese(II) and iron(II).

The consumption of turbid water *per se* does not have any direct health effects, but associated effects due to microbial contamination or the ingestion of substances bound to particulate matter, do.

Aesthetic effects (appearance, taste, odour) of turbidity can be mitigated or removed by decantation or by filtration (or by both), accelerated, if necessary, by previous aeration

Approved Technical Signatory Ms. Manuela Mayer This test report is only valid without an

Walvis Bay:

walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

TEST REPORT

To:	Digby Wells Envir	onmental SA (P	'ty) Ltd.					
	48 Grosvenor Road			Dat	e received:	26/Jan/22		
	Brtanston 2191			Date	e analysed:	8 February -	28 March 20	22
	South Africa			Dat	e reported:	29/Mar/22		
Attn:	Ms Megan Edwards			Client Ref	erence no.:	AFT-7220		
e-mail:	megan.edwards@dig	bywells.com		Que	otation no.:	QU-6835		
Tel:	+27 11 789 9495			Lab	Reference:	1220280		
				Enq	uiries: Ms N	lanuela Mayer		
Sample det	ails	borehole wate	r					
Location of	i sampling point	Uis, Afritin min	e					
Description	n of sampling point	BH3-4						
Date of san	npling	2022/01/10; 18:	00					
Test item n	umber	1220280/19						
					R	ecommended	maximum li	imits
			Hı	Iman consum	ption	Livestock		
Parameter		Value	Units	Classification	Group A	Group B	Group C	watering
рН		7.0	.	A	6-9	5.5-9.5	4-11	
Electrical C	Conductivity	881	mS/m	D	150	300	400	
Turbidity		0.55	NTU	A	1	5	10	
Total Disso	lved Solids (calc.)	5447	mg/l					6000
P-Alkalinity	as CaCO ₃	0	mg/l					
Total Alkali	inity as CaCO ₃	400	mg/l	_			1000	
Total Hardr	ness as CaCO ₃	2367	mg/l	D	300	650	1300	0500
Ca-Hardnes	ss as $CaCO_3$	1156	mg/l	D	375	500	1000	2500
Mg-Hardne	ss as CaCO ₃	1211	mg/l	D	290	420	840	2057
Chloride as		2166	mg/I	D	250	600	1200	1500-3000
Fluoride as	F	0.9	mg/I	A	1.5	2.0	3.0	2.0-6.0
Sulphate as	s SO ₄ -	1052	mg/I		200	600	1200	1000
Nitrate as N	4	5.4	mg/I	A	10	20	40	100
Nitrite as N	N	<0.01	mg/I					10
Ammonium	i as n	<0.02	mg/i	D	100	400	800	0000
Source as		1104	mg/l		200	400	800	2000
Polassium		004	mg/l	A	200	400	200	500
		294	mg/l	D	150	200	200	1000
Manganaa	a a Mn	403 0.01	ma/l			∠00 1 0	400 2 0	1000
Manganese		0.01	mg/l	A	0.05	1.0	2.0	10
Stability pL	l at 25°C	0.03	iiig/i	~	0.1	1.0	2.0	10
	1, al 20 0 ndav	0.3	scaling		- ecolina	0-corrosivo 0 ot	able	
Langener index		U.1 E C	scaling		~6 5_cooline		aute	stable
	57	0.0	scanny		<0.0=scaiing,	$>$ <i>i</i> , $3=$ corrosive, \geq	<u>-0.0 anu <</u> /.0=8	siaule

increasing corrosive tendency

10.4

Applies to water in the pH range 7-8

which also contains dissolved oxygen

ratios <0.2 no corrosive properties

ratios >0.2 increasing corrosive tendency

Corrosivity ratio

Approved Technical Signatory Ms. Manuela Mayer

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Remark:

Overall classification of water, considering only constituents that have been tested for: Group D: high risk or water unsuitable for human consumption

Interpretation based on guidelines for the evaluation of drinking water for human consumption, DWA, Namibia, April 1988 and South African Water Quality Guidelines Volume 5: Agricultural water use: Livestock watering, Second Edition, 1996

For practical reasons, the guidelines are divided into four groups. The highest group assigned to any of the constituents determines the classification of the water as a whole. Group A: excellent quality water Group B: good quality water Group C: low risk water Group D: high risk or water unsuitable for human consumption

Ideally water should be either Group A or Group B. If water is classified as Group C, the situation is not yet critical, but attention should be given to those constituents over the Group B limit. If however, the water is classified as Group D urgent and immediate attention is required to reduce the levels of the problem constituents in the water to suitable levels.

Sample acceptance:Sample was collected in bottles provided by the laboratory.
Sample was suitable for testing

Approved Technical Signatory

Analytical Laboratory Services

Windhoek: info@analab.com.na Tel +264 61 210 132 Cell +264 81 611 8843 71 Newcastle Street

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Assessment of water quality for human consumption

Naturally occurring chemicals that are of health significance in drinking water

Fluoride: Exposure to high levels of fluoride, which occurs naturally, can lead to mottling of teeth and, in severe cases, crippling skeletal fluorosis.

0-1.0 mg/l fluoride: no adverse health effects or tooth damage occurs

Chemicals from agricultural activities that are of health significance in drinking water Nitrate and nitrite: In water it has been associated with methaemoglobinaemia, especially in bottle-fed infants 0-6 mg/l nitrate as N: no adverse health effects

Some of the naturally occurring chemicals which occur in drinking water at concentrations below those at which toxic effects may occur.

Chloride: high concentrations of chloride give a salty taste to water. Concentrations in excess of 250 mg/l are increasingly likely to be detected by taste.

Hardness: Depending on the interaction of other factors, such as, pH and alkalinity, water with a hardness above approximately 200 mg/l may cause scale deposition in the pipe work and tanks. On heating, hard waters form deposits of calcium carbonate scale.

pH: Optimum pH 6.5-8.

pH does not exert direct health effects, but may exert indirect health effects via metal solubility.

Sodium: The average taste threshold for sodium is about 200 mg/l.

Sulphate: It is generally considered that the taste impairment is minimal at levels below 250 mg/l.

Magnesium: The average taste threshold for magnesium is about 70 mg/l

Total dissolved solids: The palatability of water with a TDS level of less than 600 mg/l is generally considered to be good; drinking water becomes significantly and increasingly unpalatable at TDS levels greater than about 1000 mg/l.

Turbidity is a measure of the light-scattering ability of water and is indicative of the concentration of suspended matter in water.

Microorganisms are often associated with turbidity, hence low turbidity minimises the potential for transmission of infectious diseases. Turbidity also affects the aesthetic quality of water.

Turbidity in water is caused by the presence of suspended matter which usually consists of a mixture of inorganic matter, such as clay and soil particles and organic matter.

Turbidity may also be associated with the presence of inorganic ions such as manganese(II) and iron(II).

The consumption of turbid water *per se* does not have any direct health effects, but associated effects due to microbial contamination or the ingestion of substances bound to particulate matter, do.

Aesthetic effects (appearance, taste, odour) of turbidity can be mitigated or removed by decantation or by filtration (or by both), accelerated, if necessary, by previous aeration

Approved Technical Signatory Ms. Manuela Mayer This test report is only valid without an

Walvis Bay:

walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

TEST REPORT

To:	Digby Wells Enviro	onmental SA (F	Pty) Ltd.					
	48 Grosvenor Road			Dat	e received:	26/Jan/22		
	Brtanston 2191			Date	e analysed:	8 February -	28 March 202	22
	South Africa			Dat	e reported:	29/Mar/22		
A 11						A ET 7000		
Attn:	Ms Megan Edwards			Client Ref	erence no.:	AF1-7220		
e-mail:	megan.edwards@dig	oywells.com		Que	Diation no.:	QU-6835		
l el:	+27 11 789 9495			Lab	Reference:	1220280		
				Enq	uiries: Ms M	anuela Mayer		
Sample det	tails	borehole wate	er					
Location of	f sampling point	Uis, Afritin mir	ne					
Descriptior	n of sampling point	BH3-5						
Date of san	npling	2022/01/10; 12	:00					
Test item n	number	1220280/20						
					Re	commended	maximum li	mits
					Hu	man consum	ption	Livestock
Parameter		Value	Units	Classification	Group A	Group B	Group C	watering
рН		6.9		A	6-9	5.5-9.5	4-11	
Electrical C	Conductivity	883	mS/m	D	150	300	400	
Turbidity		0.40	NTU	A	1	5	10	
Total Disso	olved Solids (calc.)	5408	mg/l					6000
P-Alkalinity	y as CaCO ₃	0	mg/l					
Total Alkali	inity as CaCO ₃	395	mg/l					
Total Hardr	ness as CaCO ₃	2361	mg/l	D	300	650	1300	
Ca-Hardnes	ss as CaCO $_3$	1146	mg/l	D	375	500	1000	2500
Mg-Hardne	ss as CaCO ₃	1215	mg/l	D	290	420	840	2057
Chloride as	s Cl ⁻	2143	mg/l	D	250	600	1200	1500-3000
Fluoride as	s F	0.9	mg/l	A	1.5	2.0	3.0	2.0-6.0
Sulphate as	s SO4 ²⁻	1046	mg/l	С	200	600	1200	1000
Nitrate as N	N	5.6	mg/l	A	10	20	40	100
Nitrite as N	l	<0.01	mg/l					10
Ammonium	n as N	<0.02	mg/l					
Sodium as	Na	1147	mg/l	D	100	400	800	2000
Potassium	as K	55	mg/l	A	200	400	800	
Magnesium	n as Mg	295	mg/l	D	70	100	200	500
Calcium as	s Ca	459	mg/l	D	150	200	400	1000
Manganese	e as Mn	<0.01	mg/l	A	0.05	1.0	2.0	10
Iron as Fe		0.02	mg/l	А	0.1	1.0	2.0	10
Stability pH	l, at 25°C	6.3						
Langelier Index		0.6	scaling	:	>0=scaling, <0	ecorrosive, 0=st	able	

<6.5=scaling, >7,5=corrosive, <u>></u>6.5 and <u><</u>7.5=stable

Applies to water in the pH range 7-8

which also contains dissolved oxygen

ratios <0.2 no corrosive properties

ratios >0.2 increasing corrosive tendency

Ryznar Index

Corrosivity ratio

Approved Technical Signatory Ms. Manuela Mayer

This test report is only valid without any alterations and shall not be published or reproduced except in full, with written consent of the laboratory. Page 1 of 3

increasing corrosive tendency

5.7

10.4

scaling

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Remark:

Overall classification of water, considering only constituents that have been tested for: Group D: high risk or water unsuitable for human consumption

Interpretation based on guidelines for the evaluation of drinking water for human consumption, DWA, Namibia, April 1988 and South African Water Quality Guidelines Volume 5: Agricultural water use: Livestock watering, Second Edition, 1996

For practical reasons, the guidelines are divided into four groups. The highest group assigned to any of the constituents determines the classification of the water as a whole. Group A: excellent quality water Group B: good quality water Group C: low risk water Group D: high risk or water unsuitable for human consumption

Ideally water should be either Group A or Group B. If water is classified as Group C, the situation is not yet critical, but attention should be given to those constituents over the Group B limit. If however, the water is classified as Group D urgent and immediate attention is required to reduce the levels of the problem constituents in the water to suitable levels.

Sample acceptance:Sample was collected in bottles provided by the laboratory.
Sample was suitable for testing

Approved Technical Signatory

Analytical Laboratory Services

Windhoek: info@analab.com.na Tel +264 61 210 132 Cell +264 81 611 8843 71 Newcastle Street

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Assessment of water quality for human consumption

Naturally occurring chemicals that are of health significance in drinking water

Fluoride: Exposure to high levels of fluoride, which occurs naturally, can lead to mottling of teeth and, in severe cases, crippling skeletal fluorosis.

0-1.0 mg/l fluoride: no adverse health effects or tooth damage occurs

Chemicals from agricultural activities that are of health significance in drinking water Nitrate and nitrite: In water it has been associated with methaemoglobinaemia, especially in bottle-fed infants 0-6 mg/l nitrate as N: no adverse health effects

Some of the naturally occurring chemicals which occur in drinking water at concentrations below those at which toxic effects may occur.

Chloride: high concentrations of chloride give a salty taste to water. Concentrations in excess of 250 mg/l are increasingly likely to be detected by taste.

Hardness: Depending on the interaction of other factors, such as, pH and alkalinity, water with a hardness above approximately 200 mg/l may cause scale deposition in the pipe work and tanks. On heating, hard waters form deposits of calcium carbonate scale.

pH: Optimum pH 6.5-8.

pH does not exert direct health effects, but may exert indirect health effects via metal solubility.

Sodium: The average taste threshold for sodium is about 200 mg/l.

Sulphate: It is generally considered that the taste impairment is minimal at levels below 250 mg/l.

Magnesium: The average taste threshold for magnesium is about 70 mg/l

Total dissolved solids: The palatability of water with a TDS level of less than 600 mg/l is generally considered to be good; drinking water becomes significantly and increasingly unpalatable at TDS levels greater than about 1000 mg/l.

Turbidity is a measure of the light-scattering ability of water and is indicative of the concentration of suspended matter in water.

Microorganisms are often associated with turbidity, hence low turbidity minimises the potential for transmission of infectious diseases. Turbidity also affects the aesthetic quality of water.

Turbidity in water is caused by the presence of suspended matter which usually consists of a mixture of inorganic matter, such as clay and soil particles and organic matter.

Turbidity may also be associated with the presence of inorganic ions such as manganese(II) and iron(II).

The consumption of turbid water *per se* does not have any direct health effects, but associated effects due to microbial contamination or the ingestion of substances bound to particulate matter, do.

Aesthetic effects (appearance, taste, odour) of turbidity can be mitigated or removed by decantation or by filtration (or by both), accelerated, if necessary, by previous aeration

Approved Technical Signatory Ms. Manuela Mayer This test report is only valid without an

Walvis Bay:

walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

TEST REPORT

To:	Digby Wells Enviro	onmental SA (Pty) Ltd.					
	48 Grosvenor Road			Dat	e received:	26/Jan/22		
	Brtanston 2191			Date	e analysed:	8 February -	28 March 20	22
	South Africa			Dat	e reported:	29/Mar/22		
Attn:	Ms Megan Edwards			Client Refe	erence no.:	AFT-7220		
e-mail:	megan.edwards@digb	ywells.com		Que	otation no.:	QU-6835		
Tel:	+27 11 789 9495	-		Lab	Reference:	1220280		
				Enq	uiries: Ms M	anuela Mayer		
Sample det	tails	borehole water						
Location of	f sampling point	Uis, Afritin mine						
Description	n of sampling point	BH12-1						
Date of san	npling	2022/01/11; 9:00						
Test item n	umber	1220280/21						
					Re	ecommended	maximum l	imits
					Hu	man consum	ption	Livestock
Parameter		Value	Units	Classification	Group A	Group B	Group C	watering
рН		7.1		A	6-9	5.5-9.5	4-11	
Electrical C	Conductivity	838	mS/m	D	150	300	400	
Turbidity		0.25	NTU	A	1	5	10	
Total Disso	olved Solids (calc.)	5262	mg/l					6000
P-Alkalinity	/ as CaCO ₃	0	mg/l					
Total Alkal	inity as CaCO ₃	385	mg/l	_				
Total Hardr	ness as CaCO ₃	2124	mg/l	D	300	650	1300	
Ca-Hardnes	ss as $CaCO_3$	1181	mg/l	D	375	500	1000	2500
Mg-Hardne	ss as CaCO ₃	943	mg/l	D	290	420	840	2057
Chloride as	s Cl ⁻	1843	mg/l	D	250	600	1200	1500-3000
Fluoride as	s F	1.4	mg/l	A	1.5	2.0	3.0	2.0-6.0
Sulphate a	s SO ₄ ²	1035	mg/l	С	200	600	1200	1000
Nitrate as N	N	62	mg/l	D	10	20	40	100
Nitrite as N		0.07	mg/l					10
Ammoniun	n as N	<0.02	mg/l	_				
Sodium as	Na	1121	mg/l	D	100	400	800	2000
Potassium	as K	52	mg/l	A	200	400	800	500
Magnesium	n as Mg	229	mg/l	D	/0	100	200	500
Calcium as	s Ca	473	mg/l	D	150	200	400	1000

А

0.05

Iron as Fe 0.02 mg/l А 0.1 Stability pH, at 25°C 6.3 Langelier Index 0.8 scaling >0=scaling, <0=corrosive, 0=stable **Ryznar Index** 5.5 scaling <6.5=scaling, >7,5=corrosive, ≥6.5 and ≤7.5=stable **Corrosivity ratio** 9.6 Applies to water in the pH range 7-8 increasing corrosive tendency which also contains dissolved oxygen ratios <0.2 no corrosive properties

mg/l

<0.01

ratios >0.2 increasing corrosive tendency

1.0

1.0

2.0

2.0

10

10

Manganese as Mn

Approved Technical Signatory Ms. Manuela Mayer

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Remark:

Overall classification of water, considering only constituents that have been tested for: Group D: high risk or water unsuitable for human consumption

Interpretation based on guidelines for the evaluation of drinking water for human consumption, DWA, Namibia, April 1988 and South African Water Quality Guidelines Volume 5: Agricultural water use: Livestock watering, Second Edition, 1996

For practical reasons, the guidelines are divided into four groups. The highest group assigned to any of the constituents determines the classification of the water as a whole. Group A: excellent quality water Group B: good quality water Group C: low risk water Group D: high risk or water unsuitable for human consumption

Ideally water should be either Group A or Group B. If water is classified as Group C, the situation is not yet critical, but attention should be given to those constituents over the Group B limit. If however, the water is classified as Group D urgent and immediate attention is required to reduce the levels of the problem constituents in the water to suitable levels.

Sample acceptance:Sample was collected in bottles provided by the laboratory.
Sample was suitable for testing

Approved Technical Signatory

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Assessment of water quality for human consumption

Naturally occurring chemicals that are of health significance in drinking water

Fluoride: Exposure to high levels of fluoride, which occurs naturally, can lead to mottling of teeth and, in severe cases, crippling skeletal fluorosis.

1.0-1.5 mg/l fluoride: slight mottling of dental enamel may occur in sensitive individuals. No other health effects are expected

Chemicals from agricultural activities that are of health significance in drinking water Nitrate and nitrite: In water it has been associated with methaemoglobinaemia, especially in bottle-fed infants >20 mg/l nitrate as N: methemoglobinaemia occurs in infants. Occurrence of mucous membrane irritation in adults

Some of the naturally occurring chemicals which occur in drinking water at concentrations below those at which toxic effects may occur.

Chloride: high concentrations of chloride give a salty taste to water. Concentrations in excess of 250 mg/l are increasingly likely to be detected by taste.

Hardness: Depending on the interaction of other factors, such as, pH and alkalinity, water with a hardness above approximately 200 mg/l may cause scale deposition in the pipe work and tanks. On heating, hard waters form deposits of calcium carbonate scale.

pH: Optimum pH 6.5-8.

pH does not exert direct health effects, but may exert indirect health effects via metal solubility.

Sodium: The average taste threshold for sodium is about 200 mg/l.

Sulphate: It is generally considered that the taste impairment is minimal at levels below 250 mg/l.

Magnesium: The average taste threshold for magnesium is about 70 mg/l

Total dissolved solids: The palatability of water with a TDS level of less than 600 mg/l is generally considered to be good; drinking water becomes significantly and increasingly unpalatable at TDS levels greater than about 1000 mg/l.

Turbidity is a measure of the light-scattering ability of water and is indicative of the concentration of suspended matter in water.

Microorganisms are often associated with turbidity, hence low turbidity minimises the potential for transmission of infectious diseases. Turbidity also affects the aesthetic quality of water.

Turbidity in water is caused by the presence of suspended matter which usually consists of a mixture of inorganic matter, such as clay and soil particles and organic matter.

Turbidity may also be associated with the presence of inorganic ions such as manganese(II) and iron(II).

The consumption of turbid water *per se* does not have any direct health effects, but associated effects due to microbial contamination or the ingestion of substances bound to particulate matter, do.

Aesthetic effects (appearance, taste, odour) of turbidity can be mitigated or removed by decantation or by filtration (or by both), accelerated, if necessary, by previous aeration

Approved Technical Signatory Ms. Manuela Mayer This test report is only valid without a

Walvis Bay:

walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

TEST REPORT

To:	Digby Wells Enviro	onmental SA (Pty)) Ltd.					
	48 Grosvenor Road			Dat	e received:	26/Jan/22		
	Brtanston 2191			Date	e analysed:	8 February -	28 March 20	22
	South Africa			Dat	e reported:	29/Mar/22		
Attn:	Ms Megan Edwards			Client Refe	erence no.:	AFT-7220		
e-mail:	megan.edwards@digt	oywells.com		Que	otation no.:	QU-6835		
Tel:	+27 11 789 9495			Lab	Reference:	1220280		
				Enq	uiries: Ms M	lanuela Mayer		
Sample det	ails	borehole water						
Location of	sampling point	Uis, Afritin mine						
Description	of sampling point	BH12-2						
Date of san	npling	2022/01/11; 21:40						
Test item n	umber	1220280/22						
					Re	ecommended	maximum li	imits
					Hu	man consum	ption	Livestock
Parameter		Value	Units	Classification	Group A	Group B	Group C	watering
рН		7.1		A	6-9	5.5-9.5	4-11	
Electrical C	Conductivity	812	mS/m	D	150	300	400	
Turbidity		0.30	NTU	A	1	5	10	
Total Disso	lved Solids (calc.)	5022	mg/l					6000
P-Alkalinity	as CaCO ₃	0	mg/l					
Total Alkali	inity as CaCO ₃	285	mg/l					
Total Hardr	ness as CaCO ₃	2013	mg/l	D	300	650	1300	
Ca-Hardnes	ss as CaCO ₃	1124	mg/l	D	375	500	1000	2500
Mg-Hardne	ss as $CaCO_3$	889	mg/l	D	290	420	840	2057
Chloride as	s Cl ⁻	1751	mg/l	D	250	600	1200	1500-3000
Fluoride as	F	1.4	mg/l	A	1.5	2.0	3.0	2.0-6.0
Sulphate as	s SO ₄ ²⁻	1052	mg/l	С	200	600	1200	1000
Nitrate as N	1	59	mg/l	D	10	20	40	100
Nitrite as N		0.04	mg/l					10
Ammonium	n as N	<0.02	mg/l					
Sodium as	Na	1069	mg/l	D	100	400	800	2000
Potassium	as K	51	mg/l	A	200	400	800	
Magnesium	n as Mg	216	mg/l	D	70	100	200	500
Calcium as	Ca	450	mg/l	D	150	200	400	1000
Manganese	e as Mn	<0.01	mg/l	A	0.05	1.0	2.0	10
Iron as Fe		0.03	mg/l	A	0.1	1.0	2.0	10
Stability pH	l, at 25°C	6.5						

scaling <6.

increasing corrosive tendency

scaling

0.6

5.8

12.5

>0=scaling, <0=corrosive, 0=stable

<6.5=scaling, >7,5=corrosive, <u>></u>6.5 and <u><</u>7.5=stable

Applies to water in the pH range 7-8

which also contains dissolved oxygen

ratios <0.2 no corrosive properties

ratios >0.2 increasing corrosive tendency

Langelier Index

Corrosivity ratio

Ryznar Index

Approved Technical Signatory Ms. Manuela Mayer

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Remark:

Overall classification of water, considering only constituents that have been tested for: Group D: high risk or water unsuitable for human consumption

Interpretation based on guidelines for the evaluation of drinking water for human consumption, DWA, Namibia, April 1988 and South African Water Quality Guidelines Volume 5: Agricultural water use: Livestock watering, Second Edition, 1996

For practical reasons, the guidelines are divided into four groups. The highest group assigned to any of the constituents determines the classification of the water as a whole. Group A: excellent quality water Group B: good quality water Group C: low risk water Group D: high risk or water unsuitable for human consumption

Ideally water should be either Group A or Group B. If water is classified as Group C, the situation is not yet critical, but attention should be given to those constituents over the Group B limit. If however, the water is classified as Group D urgent and immediate attention is required to reduce the levels of the problem constituents in the water to suitable levels.

Sample acceptance:Sample was collected in bottles provided by the laboratory.
Sample was suitable for testing

Approved Technical Signatory

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Assessment of water quality for human consumption

Naturally occurring chemicals that are of health significance in drinking water

Fluoride: Exposure to high levels of fluoride, which occurs naturally, can lead to mottling of teeth and, in severe cases, crippling skeletal fluorosis.

1.0-1.5 mg/l fluoride: slight mottling of dental enamel may occur in sensitive individuals. No other health effects are expected

Chemicals from agricultural activities that are of health significance in drinking water Nitrate and nitrite: In water it has been associated with methaemoglobinaemia, especially in bottle-fed infants >20 mg/l nitrate as N: methemoglobinaemia occurs in infants. Occurrence of mucous membrane irritation in adults

Some of the naturally occurring chemicals which occur in drinking water at concentrations below those at which toxic effects may occur.

Chloride: high concentrations of chloride give a salty taste to water. Concentrations in excess of 250 mg/l are increasingly likely to be detected by taste.

Hardness: Depending on the interaction of other factors, such as, pH and alkalinity, water with a hardness above approximately 200 mg/l may cause scale deposition in the pipe work and tanks. On heating, hard waters form deposits of calcium carbonate scale.

pH: Optimum pH 6.5-8.

pH does not exert direct health effects, but may exert indirect health effects via metal solubility.

Sodium: The average taste threshold for sodium is about 200 mg/l.

Sulphate: It is generally considered that the taste impairment is minimal at levels below 250 mg/l.

Magnesium: The average taste threshold for magnesium is about 70 mg/l

Total dissolved solids: The palatability of water with a TDS level of less than 600 mg/l is generally considered to be good; drinking water becomes significantly and increasingly unpalatable at TDS levels greater than about 1000 mg/l.

Turbidity is a measure of the light-scattering ability of water and is indicative of the concentration of suspended matter in water.

Microorganisms are often associated with turbidity, hence low turbidity minimises the potential for transmission of infectious diseases. Turbidity also affects the aesthetic quality of water.

Turbidity in water is caused by the presence of suspended matter which usually consists of a mixture of inorganic matter, such as clay and soil particles and organic matter.

Turbidity may also be associated with the presence of inorganic ions such as manganese(II) and iron(II).

The consumption of turbid water *per se* does not have any direct health effects, but associated effects due to microbial contamination or the ingestion of substances bound to particulate matter, do.

Aesthetic effects (appearance, taste, odour) of turbidity can be mitigated or removed by decantation or by filtration (or by both), accelerated, if necessary, by previous aeration

Approved Technical Signatory Ms. Manuela Mayer This test report is only valid without a

Walvis Bay:

walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

TEST REPORT

To:	Digby Wells Enviro	onmental SA (Pty)) Ltd.							
	48 Grosvenor Road			Dat	e received:	26/Jan/22				
	Brtanston 2191			Date	e analysed:	8 February -	28 March 20	22		
	South Africa			Dat	e reported:	29/Mar/22				
Attn:	Ms Megan Edwards			Client Reference no.: AFT-7220						
e-mail:	megan.edwards@digb	ywells.com		Quotation no.: QU-6835						
Tel:	+27 11 789 9495			Lab	Reference:	1220280				
				Enq	uiries: Ms Ma	anuela Mayer				
Sample deta	ails	borehole water								
Location of	sampling point	Uis, Afritin mine								
Description	of sampling point	BH12-3								
Date of sam	pling	2022/01/12; 9:20								
Test item nu	umber	1220280/23								
					Re	commended	maximum li	mits		
					Hui	man consum	ption	Livestock		
Parameter		Value	Units	Classification	Group A	Group B	Group C	watering		
рН		7.2		А	6-9	5.5-9.5	4-11			
Electrical Co	onductivity	802	mS/m	D	150	300	400			
Turbidity		0.30	NTU	А	1	5	10			
Total Dissol	ved Solids (calc.)	5075	mg/l					6000		
P-Alkalinity	as CaCO ₃	0	mg/l							
Total Alkalir	nity as CaCO₃	345	mg/l							
Total Hardne	ess as CaCO ₃	2012	mg/l	D	300	650	1300			
Ca-Hardnes	s as CaCO ₃	1126	mg/l	D	375	500	1000	2500		
Mg-Hardnes	s as CaCO ₃	885	mg/l	D	290	420	840	2057		
Chloride as	CI	1751	mg/l	D	250	600	1200	1500-3000		
Fluoride as	F	1.4	mg/l	A	1.5	2.0	3.0	2.0-6.0		
Sulphate as	SO4 ²⁻	1062	mg/l	С	200	600	1200	1000		
Nitrate as N		58	mg/l	D	10	20	40	100		
Nitrite as N		0.05	mg/l					10		
Ammonium	as N	0.49	mg/l							
Sodium as N	Na	1081	mg/l	D	100	400	800	2000		
Potassium a	as K	51	mg/l	А	200	400	800			
Magnesium	as Mg	215	mg/l	D	70	100	200	500		
Calcium as	Ca	451	mg/l	D	150	200	400	1000		
Manganese	as Mn	<0.01	mg/l	A	0.05	1.0	2.0	10		
Iron as Fe		0.02	mg/l	А	0.1	1.0	2.0	10		

5.6 scaling10.4 increasing corrosive tendency

scaling

6.4

0.8

>0=scaling, <0=corrosive, 0=stable

<6.5=scaling, >7,5=corrosive, <u>></u>6.5 and <u><</u>7.5=stable

Applies to water in the pH range 7-8

which also contains dissolved oxygen

ratios <0.2 no corrosive properties

ratios >0.2 increasing corrosive tendency

Stability pH, at 25°C

Langelier Index

Corrosivity ratio

Ryznar Index

Approved Technical Signatory Ms. Manuela Mayer

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Remark:

Overall classification of water, considering only constituents that have been tested for: Group D: high risk or water unsuitable for human consumption

Interpretation based on guidelines for the evaluation of drinking water for human consumption, DWA, Namibia, April 1988 and South African Water Quality Guidelines Volume 5: Agricultural water use: Livestock watering, Second Edition, 1996

For practical reasons, the guidelines are divided into four groups. The highest group assigned to any of the constituents determines the classification of the water as a whole. Group A: excellent quality water Group B: good quality water Group C: low risk water Group D: high risk or water unsuitable for human consumption

Ideally water should be either Group A or Group B. If water is classified as Group C, the situation is not yet critical, but attention should be given to those constituents over the Group B limit. If however, the water is classified as Group D urgent and immediate attention is required to reduce the levels of the problem constituents in the water to suitable levels.

Sample acceptance:Sample was collected in bottles provided by the laboratory.
Sample was suitable for testing

Approved Technical Signatory

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Assessment of water quality for human consumption

Naturally occurring chemicals that are of health significance in drinking water

Fluoride: Exposure to high levels of fluoride, which occurs naturally, can lead to mottling of teeth and, in severe cases, crippling skeletal fluorosis.

1.0-1.5 mg/l fluoride: slight mottling of dental enamel may occur in sensitive individuals. No other health effects are expected

Chemicals from agricultural activities that are of health significance in drinking water Nitrate and nitrite: In water it has been associated with methaemoglobinaemia, especially in bottle-fed infants >20 mg/l nitrate as N: methemoglobinaemia occurs in infants. Occurrence of mucous membrane irritation in adults

Some of the naturally occurring chemicals which occur in drinking water at concentrations below those at which toxic effects may occur.

Chloride: high concentrations of chloride give a salty taste to water. Concentrations in excess of 250 mg/l are increasingly likely to be detected by taste.

Hardness: Depending on the interaction of other factors, such as, pH and alkalinity, water with a hardness above approximately 200 mg/l may cause scale deposition in the pipe work and tanks. On heating, hard waters form deposits of calcium carbonate scale.

pH: Optimum pH 6.5-8.

pH does not exert direct health effects, but may exert indirect health effects via metal solubility.

Sodium: The average taste threshold for sodium is about 200 mg/l.

Sulphate: It is generally considered that the taste impairment is minimal at levels below 250 mg/l.

Magnesium: The average taste threshold for magnesium is about 70 mg/l

Total dissolved solids: The palatability of water with a TDS level of less than 600 mg/l is generally considered to be good; drinking water becomes significantly and increasingly unpalatable at TDS levels greater than about 1000 mg/l.

Turbidity is a measure of the light-scattering ability of water and is indicative of the concentration of suspended matter in water.

Microorganisms are often associated with turbidity, hence low turbidity minimises the potential for transmission of infectious diseases. Turbidity also affects the aesthetic quality of water.

Turbidity in water is caused by the presence of suspended matter which usually consists of a mixture of inorganic matter, such as clay and soil particles and organic matter.

Turbidity may also be associated with the presence of inorganic ions such as manganese(II) and iron(II).

The consumption of turbid water *per se* does not have any direct health effects, but associated effects due to microbial contamination or the ingestion of substances bound to particulate matter, do.

Aesthetic effects (appearance, taste, odour) of turbidity can be mitigated or removed by decantation or by filtration (or by both), accelerated, if necessary, by previous aeration

Approved Technical Signatory Ms. Manuela Mayer This test report is only valid without a

Walvis Bay:

walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

TEST REPORT

To:	Digby Wells Envir	onmental SA (P	rty) Ltd.					
	48 Grosvenor Road			Da	ate received:	26/Jan/22		
	Brtanston 2191			Da	te analysed:	8 February -	28 March 20	22
	South Africa			Da	ate reported:	29/Mar/22		
Attn:	Ms Megan Edwards			Client Re	ference no.:	AFT-7220		
e-mail:	megan.edwards@dig	bywells.com		Qı	uotation no.:	QU-6835		
Tel:	+27 11 789 9495			Lab	Reference:	1220280		
				En	quiries: Ms M	anuela Mayer		
Sample det	ails	borehole wate	er					
Location of	f sampling point	Uis, Afritin mir	ne					
Descriptior	Description of sampling point							
Date of san	npling	2022/01/12; 21:	:00					
Test item n	umber	1220280/24						
					Re	commended	maximum li	imits
					Hui	man consum	ption	Livestock
Parameter		Value	Units	Classification	Group A	Group B	Group C	watering
рН		7.2		A	6-9	5.5-9.5	4-11	
Electrical C	Conductivity	3260	mS/m	D	150	300	400	
Turbidity		3.0	NTU	В	1	5	10	
Total Disso	lved Solids (calc.)	22768	mg/l					6000
P-Alkalinity	/ as CaCO ₃	0	mg/l					
Total Alkal	inity as CaCO ₃	190	mg/l	_				
Total Hardr	ness as CaCO ₃	6597	mg/l	D	300	650	1300	
Ca-Hardnes	ss as $CaCO_3$	2462	mg/l	D	375	500	1000	2500
Mg-Hardne	ss as $CaCO_3$	4134	mg/l	D	290	420	840	2057
Chloride as		9332	mg/l	D	250	600	1200	1500-3000
Fluoride as	F 2	2.1	mg/l	C	1.5	2.0	3.0	2.0-6.0
Sulphate as	s SO ₄ ²	5449	mg/l	D	200	600	1200	1000
Nitrate as N	N	12	mg/l	В	10	20	40	100
Nitrite as N	•	0.13	mg/l					10
Ammoniun	1 as N	0.44	mg/i	D	100	100	000	0000
Sodium as	Na	5596	mg/I	D	100	400	800	2000
Potassium	as K	232	mg/I	В	200	400	800	500
	n as Mg	1004	mg/i	D	70	100	200	500
Calcium as		980	mg/i		150	200	400	1000
	e as win	<0.1	mg/i	A	0.05	1.0	2.0	10
ITON as re	1 at 25°C	<u.1< th=""><th>mg/i</th><th>A</th><th>0.1</th><th>1.0</th><th>2.0</th><th>10</th></u.1<>	mg/i	A	0.1	1.0	2.0	10
	1, al 23°U	0.4	agoling				abla	
Langeller Index		U.O E E	scaling >U=Scaling, <u=scaling u="Scaling</th"><th>atabla</th></u=scaling>				atabla	
Ryznar Index		5.5	c scaling $<$ c .5=scaling, $>/,$ 0=corrosive, \geq 6.5 and $\leq/.5=$ sta			siable		
CONUSIVILY	ιαιιυ	33.Z	moreasing co	IT USIVE LEHABILCY	Applies to wat	er in me p⊓ ranç	10 / -0	

Applies to water in the pH range 7-8

which also contains dissolved oxygen

ratios <0.2 no corrosive properties

ratios >0.2 increasing corrosive tendency

Approved Technical Signatory Ms. Manuela Mayer

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Remark:

Overall classification of water, considering only constituents that have been tested for: Group D: high risk or water unsuitable for human consumption

Interpretation based on guidelines for the evaluation of drinking water for human consumption, DWA, Namibia, April 1988 and South African Water Quality Guidelines Volume 5: Agricultural water use: Livestock watering, Second Edition, 1996

For practical reasons, the guidelines are divided into four groups. The highest group assigned to any of the constituents determines the classification of the water as a whole. Group A: excellent quality water Group B: good quality water Group C: low risk water Group D: high risk or water unsuitable for human consumption

Ideally water should be either Group A or Group B. If water is classified as Group C, the situation is not yet critical, but attention should be given to those constituents over the Group B limit. If however, the water is classified as Group D urgent and immediate attention is required to reduce the levels of the problem constituents in the water to suitable levels.

Sample acceptance:Sample was collected in bottles provided by the laboratory.
Sample was suitable for testing

Approved Technical Signatory

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Assessment of water quality for human consumption

Naturally occurring chemicals that are of health significance in drinking water

Fluoride: Exposure to high levels of fluoride, which occurs naturally, can lead to mottling of teeth and, in severe cases, crippling skeletal fluorosis.

1.5-3.5 mg/l fluoride: the threshold for marked dental mottling with associated tooth damage due to softening of enamel is 1.5mg/L. Above this, mottling and tooth damage will probably be noticeable in most continuous users of the water. No other health effects occur.

Chemicals from agricultural activities that are of health significance in drinking water

Nitrate and nitrite: In water it has been associated with methaemoglobinaemia, especially in bottle-fed infants 10-20 mg/l nitrate as N: methhaemoglobinaemia may occur in infants. No effects in adults.

Some of the naturally occurring chemicals which occur in drinking water at concentrations below those at which toxic effects may occur.

Chloride: high concentrations of chloride give a salty taste to water. Concentrations in excess of 250 mg/l are increasingly likely to be detected by taste.

Hardness: Depending on the interaction of other factors, such as, pH and alkalinity, water with a hardness above approximately 200 mg/l may cause scale deposition in the pipe work and tanks. On heating, hard waters form deposits of calcium carbonate scale.

pH: Optimum pH 6.5-8.

pH does not exert direct health effects, but may exert indirect health effects via metal solubility.

Sodium: The average taste threshold for sodium is about 200 mg/l.

Sulphate: It is generally considered that the taste impairment is minimal at levels below 250 mg/l.

Magnesium: The average taste threshold for magnesium is about 70 mg/l

Total dissolved solids: The palatability of water with a TDS level of less than 600 mg/l is generally considered to be good; drinking water becomes significantly and increasingly unpalatable at TDS levels greater than about 1000 mg/l.

Turbidity is a measure of the light-scattering ability of water and is indicative of the concentration of suspended matter in water.

Microorganisms are often associated with turbidity, hence low turbidity minimises the potential for transmission of infectious diseases. Turbidity also affects the aesthetic quality of water.

Turbidity in water is caused by the presence of suspended matter which usually consists of a mixture of inorganic matter, such as clay and soil particles and organic matter.

Turbidity may also be associated with the presence of inorganic ions such as manganese(II) and iron(II). The consumption of turbid water *per se* does not have any direct health effects, but associated effects due

to microbial contamination or the ingestion of substances bound to particulate matter, do.

Aesthetic effects (appearance, taste, odour) of turbidity can be mitigated or removed by decantation or by filtration (or by both), accelerated, if necessary, by previous aeration

Approved Technical Signatory Ms. Manuela Mayer This test report is only valid without a

Walvis Bay:

walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

TEST REPORT

To:	Digby Wells Enviro	onmental SA (Pty) Ltd.							
2	18 Grosvenor Road			Dat	e received:	26/Jan/22				
E	Brtanston 2191			Date	e analysed:	8 February -	28 March 202	22		
5	South Africa			Dat	e reported:	29/Mar/22				
Attn: N	VIs Megan Edwards			Client Ref	erence no.:	AFT-7220				
e-mail: r	negan.edwards@digb	ywells.com		Que	otation no.:	QU-6835				
Tel: +	⊦27 11 789 9495			Lab Reference: I220280						
				Enq	uiries: Ms M	lanuela Mayer				
Sample detai	ls	borehole water								
Location of s	ampling point	Uis, Afritin mine								
Description of	of sampling point	BH12-5								
Date of samp	oling	2022/01/13; 9:00								
Test item nur	mber	1220280/25								
					Re	ecommended	maximum li	mits		
					Hu	man consum	ption	Livestock		
Parameter		Value	Units	Classification	Group A	Group B	Group C	watering		
рН		7.2		A	6-9	5.5-9.5	4-11			
Electrical Co	nductivity	785	mS/m	D	150	300	400			
Turbidity		0.60	NTU	А	1	5	10			
Total Dissolv	ed Solids (calc.)	4826	mg/l					6000		
P-Alkalinity a	s CaCO₃	0	mg/l							
Total Alkalini	ity as CaCO ₃	345	mg/l							
Total Hardne	ss as CaCO₃	1876	mg/l	D	300	650	1300			
Ca-Hardness	as CaCO ₃	1049	mg/l	D	375	500	1000	2500		
Mg-Hardness	s as CaCO ₃	828	mg/l	С	290	420	840	2057		
Chloride as C		1728	mg/l	D	250	600	1200	1500-3000		
Fluoride as F	r	1.4	mg/l	А	1.5	2.0	3.0	2.0-6.0		
Sulphate as S	50 ₄ ²⁻	1002	mg/l	С	200	600	1200	1000		
Nitrate as N		49	mg/l	D	10	20	40	100		
Nitrite as N		0.06	mg/l					10		
Ammonium a	as N	<0.02	mg/l							
Sodium as N	а	1000	mg/l	D	100	400	800	2000		
Potassium as	s K	50	mg/l	A	200	400	800			
Magnesium a	as Mg	201	mg/l	D	70	100	200	500		
Calcium as C	a	420	mg/l	D	150	200	400	1000		
Manganese a	is Mn	<0.01	mg/l	А	0.05	1.0	2.0	10		

 0.02
 mg/l
 A
 0.1

 6.4
 0.8
 scaling
 >0=scalin

 5.6
 scaling
 <6.5=scalin</td>

 10.1
 increasing corrosive tendency
 Applies to

>0=scaling, <0=corrosive, 0=stable

<6.5=scaling, >7,5=corrosive, <u>></u>6.5 and <u><</u>7.5=stable

1.0

2.0

10

Applies to water in the pH range 7-8

which also contains dissolved oxygen

ratios <0.2 no corrosive properties

ratios >0.2 increasing corrosive tendency

Iron as Fe

Stability pH, at 25°C

Langelier Index

Corrosivity ratio

Ryznar Index

Approved Technical Signatory Ms. Manuela Mayer

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Remark:

Overall classification of water, considering only constituents that have been tested for: Group D: high risk or water unsuitable for human consumption

Interpretation based on guidelines for the evaluation of drinking water for human consumption, DWA, Namibia, April 1988 and South African Water Quality Guidelines Volume 5: Agricultural water use: Livestock watering, Second Edition, 1996

For practical reasons, the guidelines are divided into four groups. The highest group assigned to any of the constituents determines the classification of the water as a whole. Group A: excellent quality water Group B: good quality water Group C: low risk water Group D: high risk or water unsuitable for human consumption

Ideally water should be either Group A or Group B. If water is classified as Group C, the situation is not yet critical, but attention should be given to those constituents over the Group B limit. If however, the water is classified as Group D urgent and immediate attention is required to reduce the levels of the problem constituents in the water to suitable levels.

Sample acceptance:Sample was collected in bottles provided by the laboratory.
Sample was suitable for testing

Approved Technical Signatory

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Assessment of water quality for human consumption

Naturally occurring chemicals that are of health significance in drinking water

Fluoride: Exposure to high levels of fluoride, which occurs naturally, can lead to mottling of teeth and, in severe cases, crippling skeletal fluorosis.

1.0-1.5 mg/l fluoride: slight mottling of dental enamel may occur in sensitive individuals. No other health effects are expected

Chemicals from agricultural activities that are of health significance in drinking water Nitrate and nitrite: In water it has been associated with methaemoglobinaemia, especially in bottle-fed infants >20 mg/l nitrate as N: methemoglobinaemia occurs in infants. Occurrence of mucous membrane irritation in adults

Some of the naturally occurring chemicals which occur in drinking water at concentrations below those at which toxic effects may occur.

Chloride: high concentrations of chloride give a salty taste to water. Concentrations in excess of 250 mg/l are increasingly likely to be detected by taste.

Hardness: Depending on the interaction of other factors, such as, pH and alkalinity, water with a hardness above approximately 200 mg/l may cause scale deposition in the pipe work and tanks. On heating, hard waters form deposits of calcium carbonate scale.

pH: Optimum pH 6.5-8.

pH does not exert direct health effects, but may exert indirect health effects via metal solubility.

Sodium: The average taste threshold for sodium is about 200 mg/l.

Sulphate: It is generally considered that the taste impairment is minimal at levels below 250 mg/l.

Magnesium: The average taste threshold for magnesium is about 70 mg/l

Total dissolved solids: The palatability of water with a TDS level of less than 600 mg/l is generally considered to be good; drinking water becomes significantly and increasingly unpalatable at TDS levels greater than about 1000 mg/l.

Turbidity is a measure of the light-scattering ability of water and is indicative of the concentration of suspended matter in water.

Microorganisms are often associated with turbidity, hence low turbidity minimises the potential for transmission of infectious diseases. Turbidity also affects the aesthetic quality of water.

Turbidity in water is caused by the presence of suspended matter which usually consists of a mixture of inorganic matter, such as clay and soil particles and organic matter.

Turbidity may also be associated with the presence of inorganic ions such as manganese(II) and iron(II).

The consumption of turbid water *per se* does not have any direct health effects, but associated effects due to microbial contamination or the ingestion of substances bound to particulate matter, do.

Aesthetic effects (appearance, taste, odour) of turbidity can be mitigated or removed by decantation or by filtration (or by both), accelerated, if necessary, by previous aeration

Approved Technical Signatory Ms. Manuela Mayer This test report is only valid without a

Walvis Bay:

walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

TEST REPORT

To:	Digby Wells Envir	onmental SA (P	Pty) Ltd.					
	48 Grosvenor Road			Dat	e received:	26/Jan/22		
	Brtanston 2191			Date	e analysed:	8 February -	28 March 202	22
	South Africa			Dat	e reported:	29/Mar/22		
Attn:	Ms Megan Edwards			Client Ref	erence no.:	AFT-7220		
e-mail:	megan.edwards@dig	bvwells.com		Que	otation no.:	QU-6835		
Tel:	+27 11 789 9495	,		Lab	Reference:	1220280		
				Enq	uiries: Ms M	lanuela Mayer		
Sample det	ails	borehole wate	er					
Location of	f sampling point	Uis, Afritin mir	ne					
Description	n of sampling point	BH6-1						
Date of san	npling	2022/01/15; 13	:00					
Test item n	umber	1220280/26						
					Re	ecommended	maximum li	mits
					Hu	man consum	ption	Livestock
Parameter		Value	Units	Classification	Group A	Group B	Group C	watering
рН		6.9		A	6-9	5.5-9.5	4-11	
Electrical C	Conductivity	1152	mS/m	D	150	300	400	
Turbidity		0.35	NTU	A	1	5	10	
Total Disso	olved Solids (calc.)	7211	mg/l					6000
P-Alkalinity	/ as CaCO₃	0	mg/l					
Total Alkali	inity as CaCO ₃	410	mg/l					
Total Hardr	ness as CaCO ₃	2781	mg/l	D	300	650	1300	
Ca-Hardnes	ss as $CaCO_3$	1229	mg/l	D	375	500	1000	2500
Mg-Hardne	ss as CaCO ₃	1552	mg/l	D	290	420	840	2057
Chloride as	s Cl ⁻	2857	mg/l	D	250	600	1200	1500-3000
Fluoride as	s F	1.4	mg/l	A	1.5	2.0	3.0	2.0-6.0
Sulphate as	s SO ₄ ²⁻	1593	mg/l	D	200	600	1200	1000
Nitrate as N	N	7.8	mg/l	A	10	20	40	100
Nitrite as N		<0.01	mg/l					10
Ammonium	n as N	<0.02	mg/l					
Sodium as	Na	1526	mg/l	D	100	400	800	2000
Potassium	as K	84	mg/l	A	200	400	800	
Magnesium	n as Mg	377	mg/l	D	70	100	200	500
Calcium as	Ca	492	mg/l	D	150	200	400	1000
Manganese	e as Mn	<0.02	mg/l	A	0.05	1.0	2.0	10
Iron as Fe		0.04	mg/l	А	0.1	1.0	2.0	10
Stability pH	l, at 25°C	6.3						
Langelier Index		0.6	scaling		>0=scaling, <0)=corrosive, 0=st	able	

<6.5=scaling, >7,5=corrosive, <u>></u>6.5 and <u><</u>7.5=stable

Applies to water in the pH range 7-8

which also contains dissolved oxygen

ratios <0.2 no corrosive properties

ratios >0.2 increasing corrosive tendency

Ryznar Index

Corrosivity ratio

Approved Technical Signatory Ms. Manuela Mayer

This test report is only valid without any alterations and shall not be published or reproduced except in full, with written consent of the laboratory. Page 1 of 3

increasing corrosive tendency

5.7

13.9

scaling

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Remark:

Overall classification of water, considering only constituents that have been tested for: Group D: high risk or water unsuitable for human consumption

Interpretation based on guidelines for the evaluation of drinking water for human consumption, DWA, Namibia, April 1988 and South African Water Quality Guidelines Volume 5: Agricultural water use: Livestock watering, Second Edition, 1996

For practical reasons, the guidelines are divided into four groups. The highest group assigned to any of the constituents determines the classification of the water as a whole. Group A: excellent quality water Group B: good quality water Group C: low risk water Group D: high risk or water unsuitable for human consumption

Ideally water should be either Group A or Group B. If water is classified as Group C, the situation is not yet critical, but attention should be given to those constituents over the Group B limit. If however, the water is classified as Group D urgent and immediate attention is required to reduce the levels of the problem constituents in the water to suitable levels.

Sample acceptance:Sample was collected in bottles provided by the laboratory.
Sample was suitable for testing

Approved Technical Signatory

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Assessment of water quality for human consumption

Naturally occurring chemicals that are of health significance in drinking water

Fluoride: Exposure to high levels of fluoride, which occurs naturally, can lead to mottling of teeth and, in severe cases, crippling skeletal fluorosis.

1.0-1.5 mg/l fluoride: slight mottling of dental enamel may occur in sensitive individuals. No other health effects are expected

Chemicals from agricultural activities that are of health significance in drinking water

Nitrate and nitrite: In water it has been associated with methaemoglobinaemia, especially in bottle-fed infants 6-10 mg/l nitrate as N: rare instances of methhaemoglobinaemia in infants; no effects in adults. Concentrations in this range generally well tolerated.

Some of the naturally occurring chemicals which occur in drinking water at concentrations below those at which toxic effects may occur.

Chloride: high concentrations of chloride give a salty taste to water. Concentrations in excess of 250 mg/l are increasingly likely to be detected by taste.

Hardness: Depending on the interaction of other factors, such as, pH and alkalinity, water with a hardness above approximately 200 mg/l may cause scale deposition in the pipe work and tanks. On heating, hard waters form deposits of calcium carbonate scale.

pH: Optimum pH 6.5-8.

pH does not exert direct health effects, but may exert indirect health effects via metal solubility.

Sodium: The average taste threshold for sodium is about 200 mg/l.

Sulphate: It is generally considered that the taste impairment is minimal at levels below 250 mg/l.

Magnesium: The average taste threshold for magnesium is about 70 mg/l

Total dissolved solids: The palatability of water with a TDS level of less than 600 mg/l is generally considered to be good; drinking water becomes significantly and increasingly unpalatable at TDS levels greater than about 1000 mg/l.

Turbidity is a measure of the light-scattering ability of water and is indicative of the concentration of suspended matter in water.

Microorganisms are often associated with turbidity, hence low turbidity minimises the potential for transmission of infectious diseases. Turbidity also affects the aesthetic quality of water.

Turbidity in water is caused by the presence of suspended matter which usually consists of a mixture of inorganic matter, such as clay and soil particles and organic matter.

Turbidity may also be associated with the presence of inorganic ions such as manganese(II) and iron(II). The consumption of turbid water *per se* does not have any direct health effects, but associated effects due

to microbial contamination or the ingestion of substances bound to particulate matter, do.

Aesthetic effects (appearance, taste, odour) of turbidity can be mitigated or removed by decantation or by filtration (or by both), accelerated, if necessary, by previous aeration

Approved Technical Signatory Ms. Manuela Mayer This test report is only valid without a

Walvis Bay:

walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

TEST REPORT

To:	Digby Wells Environ	onmental SA (F	Pty) Ltd.					
	48 Grosvenor Road			Dat	e received:	26/Jan/22		
	Brtanston 2191			Date	e analysed:	8 February -	28 March 20	22
	South Africa			Dat	e reported:	29/Mar/22		
Attn:	Ms Megan Edwards			Client Refe	erence no.:	AFT-7220		
e-mail:	megan.edwards@dig	bywells.com		Que	otation no.:	QU-6835		
Tel:	+27 11 789 9495			Lab	Reference:	1220280		
				Enq	uiries: Ms N	lanuela Mayer		
Sample det	ails	borehole wate	er					
Location of	f sampling point	Uis, Afritin mir	ne					
Descriptior	n of sampling point	BH6-2						
Date of san	npling	2022/01/16; 13	:00					
Test item n	umber	1220280/27						
					R	ecommended	maximum li	imits
					Hu	iman consum	ption	Livestock
Parameter		Value	Units	Classification	Group A	Group B	Group C	watering
рН		7.0		A	6-9	5.5-9.5	4-11	
Electrical C	Conductivity	1141	mS/m	D	150	300	400	
Turbidity		0.20	NTU	A	1	5	10	
Total Disso	olved Solids (calc.)	7048	mg/l					6000
P-Alkalinity	/ as CaCO ₃	0	mg/l					
Total Alkali	inity as CaCO ₃	410	mg/l	_				
Total Hardr	ness as CaCO ₃	2731	mg/l	D	300	650	1300	
Ca-Hardnes	ss as $CaCO_3$	1211	mg/l	D	375	500	1000	2500
Mg-Hardne	ss as CaCO₃	1520	mg/l	D	290	420	840	2057
Chloride as		2834	mg/l	D	250	600	1200	1500-3000
Fluoride as	; F	1.4	mg/l	A	1.5	2.0	3.0	2.0-6.0
Sulphate as	s SO ₄ ²⁻	1517	mg/l	D	200	600	1200	1000
Nitrate as N	N	11	mg/l	В	10	20	40	100
Nitrite as N		<0.01	mg/l					10
Ammonium	n as N	<0.02	mg/l					
Sodium as	Na	1466	mg/l	D	100	400	800	2000
Potassium	as K	81	mg/l	A	200	400	800	
Magnesium	n as Mg	369	mg/l	D	70	100	200	500
Calcium as	Ca	485	mg/l	D	150	200	400	1000
Manganese	e as Mn	<0.02	mg/l	A	0.05	1.0	2.0	10
Iron as Fe		0.04	mg/l	A	0.1	1.0	2.0	10
Stability pH	l, at 25°C	6.3						
Langelier Index		0.7	scaling	>0=scaling, <0=corrosive, 0=stable				
Ryznar Inde	ex	5.6	scaling		<6.5=scaling,	>7,5=corrosive, 2	<u>></u> 6.5 and <u><</u> 7.5=s	stable

increasing corrosive tendency

13.6

Applies to water in the pH range 7-8

which also contains dissolved oxygen

ratios <0.2 no corrosive properties

ratios >0.2 increasing corrosive tendency

Corrosivity ratio

Approved Technical Signatory Ms. Manuela Mayer

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Remark:

Overall classification of water, considering only constituents that have been tested for: Group D: high risk or water unsuitable for human consumption

Interpretation based on guidelines for the evaluation of drinking water for human consumption, DWA, Namibia, April 1988 and South African Water Quality Guidelines Volume 5: Agricultural water use: Livestock watering, Second Edition, 1996

For practical reasons, the guidelines are divided into four groups. The highest group assigned to any of the constituents determines the classification of the water as a whole. Group A: excellent quality water Group B: good quality water Group C: low risk water Group D: high risk or water unsuitable for human consumption

Ideally water should be either Group A or Group B. If water is classified as Group C, the situation is not yet critical, but attention should be given to those constituents over the Group B limit. If however, the water is classified as Group D urgent and immediate attention is required to reduce the levels of the problem constituents in the water to suitable levels.

Sample acceptance:Sample was collected in bottles provided by the laboratory.
Sample was suitable for testing

Approved Technical Signatory

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Assessment of water quality for human consumption

Naturally occurring chemicals that are of health significance in drinking water

Fluoride: Exposure to high levels of fluoride, which occurs naturally, can lead to mottling of teeth and, in severe cases, crippling skeletal fluorosis.

1.0-1.5 mg/l fluoride: slight mottling of dental enamel may occur in sensitive individuals. No other health effects are expected

Chemicals from agricultural activities that are of health significance in drinking water Nitrate and nitrite: In water it has been associated with methaemoglobinaemia, especially in bottle-fed infants 10-20 mg/l nitrate as N: methhaemoglobinaemia may occur in infants. No effects in adults.

Some of the naturally occurring chemicals which occur in drinking water at concentrations below those at which toxic effects may occur.

Chloride: high concentrations of chloride give a salty taste to water. Concentrations in excess of 250 mg/l are increasingly likely to be detected by taste.

Hardness: Depending on the interaction of other factors, such as, pH and alkalinity, water with a hardness above approximately 200 mg/l may cause scale deposition in the pipe work and tanks. On heating, hard waters form deposits of calcium carbonate scale.

pH: Optimum pH 6.5-8.

pH does not exert direct health effects, but may exert indirect health effects via metal solubility.

Sodium: The average taste threshold for sodium is about 200 mg/l.

Sulphate: It is generally considered that the taste impairment is minimal at levels below 250 mg/l.

Magnesium: The average taste threshold for magnesium is about 70 mg/l

Total dissolved solids: The palatability of water with a TDS level of less than 600 mg/l is generally considered to be good; drinking water becomes significantly and increasingly unpalatable at TDS levels greater than about 1000 mg/l.

Turbidity is a measure of the light-scattering ability of water and is indicative of the concentration of suspended matter in water.

Microorganisms are often associated with turbidity, hence low turbidity minimises the potential for transmission of infectious diseases. Turbidity also affects the aesthetic quality of water.

Turbidity in water is caused by the presence of suspended matter which usually consists of a mixture of inorganic matter, such as clay and soil particles and organic matter.

Turbidity may also be associated with the presence of inorganic ions such as manganese(II) and iron(II).

The consumption of turbid water *per se* does not have any direct health effects, but associated effects due to microbial contamination or the ingestion of substances bound to particulate matter, do.

Aesthetic effects (appearance, taste, odour) of turbidity can be mitigated or removed by decantation or by filtration (or by both), accelerated, if necessary, by previous aeration

Approved Technical Signatory Ms. Manuela Mayer This test report is only valid without any laboratory.

Walvis Bay:

walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

TEST REPORT

To:	Digby Wells Envir	onmental SA (P	rty) Ltd.						
	48 Grosvenor Road			Dat	e received:	26/Jan/22			
	Brtanston 2191			Date	e analysed:	8 February -	28 March 20	22	
	South Africa			Dat	e reported:	29/Mar/22			
Attn:	Ms Megan Edwards			Client Ref	erence no.:	AFT-7220			
e-mail:	megan.edwards@dig	bywells.com		Que	otation no.:	QU-6835			
Tel:	+27 11 789 9495			Lab	Reference:	1220280			
				Enq	uiries: Ms N	lanuela Mayer			
Sample det	ails	borehole wate	er						
Location of	f sampling point	Uis, Afritin min	ne						
Description	n of sampling point	BH6-3							
Date of san	npling	2022/01/16; 14:	:00						
Test item n	umber	1220280/28							
					Recommended maximum lin				
_					Hu	iman consum	ption	Livestock	
Parameter		Value	Units	Classification	Group A	Group B	Group C	watering	
рН		7.0	0/	A	6-9	5.5-9.5	4-11		
Electrical C	conductivity	1178	mS/m	D	150	300	400		
Turbialty		0.60	NIU marii	A	I	5	10	C000	
Total Disso	lived Solids (calc.)	/106	mg/I					6000	
P-Alkalinity	$/ as CaCO_3$	0	mg/l						
Total Alkali	inity as $CaCO_3$	405	mg/l	D	200	050	1000		
	$\frac{1}{2} \sum_{n=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^$	2013	mg/i	D	300	650 500	1000	2500	
Ma-Hardno	as as $CaCO_3$	1224	mg/i	D	200	300 420	840	2007	
Oblarida as		1590	mg/l	D	290	420	1200	1500 2000	
Chioride as		2057	mg/l	Δ	15	2.0	3.0	20-60	
Fluoride as		1.4	mg/l		200	2.0 600	1200	1000	
Nitrato as N	S 30 ₄	63	mg/l	Δ	10	20	40	1000	
Nitrite as N	•	-0.01	ma/l	Л	10	20	40	100	
Ammonium	n as N	<0.01	ma/l					10	
Sodium as	Na	1465	ma/l	D	100	400	800	2000	
Potassium	as K	84	ma/l	A	200	400	800	2000	
Magnesium	n as Mg	386	ma/l	D	70	100	200	500	
Calcium as	Ca	490	ma/l	D	150	200	400	1000	
Manganese	e as Mn	<0.02	ma/l	Ā	0.05	1.0	2.0	10	
Iron as Fe		0.05	ma/l	A	0.1	1.0	2.0	10	
Stability pH	I, at 25°C	6.3			-	-	-	-	
Langelier Index		0.7	scaling	>0=scaling, <0=corrosive, 0=stable					
Ryznar Inde	ex	5.6	scaling	<6.5=scaling, >7,5=corrosive, \geq 6.5 and \leq 7.5=stable					

<6.5=scaling, >7,5=corrosive, ≥6.5 and ≤7.5=stable

Applies to water in the pH range 7-8 increasing corrosive tendency

which also contains dissolved oxygen

ratios <0.2 no corrosive properties

ratios >0.2 increasing corrosive tendency

Corrosivity ratio

Approved Technical Signatory Ms. Manuela Mayer

This test report is only valid without any alterations and shall not be published or reproduced except in full, with written consent of the Page 1 of 3 laboratory.

14.0

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Remark:

Overall classification of water, considering only constituents that have been tested for: Group D: high risk or water unsuitable for human consumption

Interpretation based on guidelines for the evaluation of drinking water for human consumption, DWA, Namibia, April 1988 and South African Water Quality Guidelines Volume 5: Agricultural water use: Livestock watering, Second Edition, 1996

For practical reasons, the guidelines are divided into four groups. The highest group assigned to any of the constituents determines the classification of the water as a whole. Group A: excellent quality water Group B: good quality water Group C: low risk water Group D: high risk or water unsuitable for human consumption

Ideally water should be either Group A or Group B. If water is classified as Group C, the situation is not yet critical, but attention should be given to those constituents over the Group B limit. If however, the water is classified as Group D urgent and immediate attention is required to reduce the levels of the problem constituents in the water to suitable levels.

Sample acceptance:Sample was collected in bottles provided by the laboratory.
Sample was suitable for testing

Approved Technical Signatory

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Assessment of water quality for human consumption

Naturally occurring chemicals that are of health significance in drinking water

Fluoride: Exposure to high levels of fluoride, which occurs naturally, can lead to mottling of teeth and, in severe cases, crippling skeletal fluorosis.

1.0-1.5 mg/l fluoride: slight mottling of dental enamel may occur in sensitive individuals. No other health effects are expected

Chemicals from agricultural activities that are of health significance in drinking water

Nitrate and nitrite: In water it has been associated with methaemoglobinaemia, especially in bottle-fed infants 6-10 mg/l nitrate as N: rare instances of methhaemoglobinaemia in infants; no effects in adults. Concentrations in this range generally well tolerated.

Some of the naturally occurring chemicals which occur in drinking water at concentrations below those at which toxic effects may occur.

Chloride: high concentrations of chloride give a salty taste to water. Concentrations in excess of 250 mg/l are increasingly likely to be detected by taste.

Hardness: Depending on the interaction of other factors, such as, pH and alkalinity, water with a hardness above approximately 200 mg/l may cause scale deposition in the pipe work and tanks. On heating, hard waters form deposits of calcium carbonate scale.

pH: Optimum pH 6.5-8.

pH does not exert direct health effects, but may exert indirect health effects via metal solubility.

Sodium: The average taste threshold for sodium is about 200 mg/l.

Sulphate: It is generally considered that the taste impairment is minimal at levels below 250 mg/l.

Magnesium: The average taste threshold for magnesium is about 70 mg/l

Total dissolved solids: The palatability of water with a TDS level of less than 600 mg/l is generally considered to be good; drinking water becomes significantly and increasingly unpalatable at TDS levels greater than about 1000 mg/l.

Turbidity is a measure of the light-scattering ability of water and is indicative of the concentration of suspended matter in water.

Microorganisms are often associated with turbidity, hence low turbidity minimises the potential for transmission of infectious diseases. Turbidity also affects the aesthetic quality of water.

Turbidity in water is caused by the presence of suspended matter which usually consists of a mixture of inorganic matter, such as clay and soil particles and organic matter.

Turbidity may also be associated with the presence of inorganic ions such as manganese(II) and iron(II). The consumption of turbid water *per se* does not have any direct health effects, but associated effects due

to microbial contamination or the ingestion of substances bound to particulate matter, do.

Aesthetic effects (appearance, taste, odour) of turbidity can be mitigated or removed by decantation or by filtration (or by both), accelerated, if necessary, by previous aeration

Approved Technical Signatory Ms. Manuela Mayer This test report is only valid without a

Walvis Bay:

walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

TEST REPORT

To:	Digby Wells Enviro	onmental SA (Pty	/) Ltd.					
	48 Grosvenor Road			Dat	e received:	26/Jan/22		
	Brtanston 2191			Date	e analysed:	8 February -	28 March 20	22
	South Africa			Dat	e reported:	29/Mar/22		
Attn:	Ms Megan Edwards			Client Ref	erence no.:	AFT-7220		
e-mail:	megan.edwards@digb	ywells.com		Que	otation no.:	QU-6835		
Tel:	+27 11 789 9495	-		Lab	Reference:	1220280		
				Enq	uiries: Ms N	1anuela Mayer		
Sample det	ails	borehole water						
Location of	sampling point	Uis, Afritin mine						
Description	of sampling point	BH6-4						
Date of san	npling	2022/01/21; 6:00						
Test item n	umber	1220280/29						
					Re	ecommended	maximum li	imits
_					Hu	iman consum	ption	Livestock
Parameter		Value	Units	Classification	Group A	Group B	Group C	watering
рН		6.9	• /	A	6-9	5.5-9.5	4-11	
Electrical C	conductivity	1167	mS/m	D	150	300	400	
Turbidity		0.35	NIU	A	I	5	10	<u> </u>
Total Disso	lived Solids (calc.)	/38/	mg/I					6000
P-Alkalinity	$/ as CaCO_3$	0	mg/I					
		405	mg/I	D	000	050	1000	
	less as $CaCO_3$	2868	mg/I	D	300	650	1300	0500
Ca-narones		1291	mg/i	D	375	500	1000	2500
Mg-narone		1577	mg/i mg/l	D	290	420	040	2037
Chioride as		2949	mg/i		250	800	1200	1500-3000
Fluoride as	5 F	1.0	mg/i	A	200	2.0	1200	2.0-0.0
Sulphale as	s 50 ₄	1000	mg/l	^	10	20	1200	1000
Nitrito as N	4	4.0 ~0.01	mg/l	A	10	20	40	100
	n ae N	<0.01	mg/l					10
Sodium as	Na	1503	ma/l	П	100	400	800	2000
Potassium	as K	82	ma/l	A	200	400	800	2000
Magnesium	as Ma	383	ma/l	D	70	100	200	500
Calcium as		517	ma/l	D	150	200	400	1000
Manganese	as Mn	<0.02	ma/l	A	0.05	1.0	20	10
Iron as Fe		0.02	ma/l	A	0.00	1.0	2.0	10
Stability nH	I. at 25°C	6.3			0.1		2.0	
Langelier In	ndex	0.6 so	caling		>0=scalina. <i< th=""><th>0=corrosive. 0=st</th><th>able</th><th></th></i<>	0=corrosive. 0=st	able	
Ryznar Index		5.6 so	caling	<6.5 =scaling, $>7,5$ =corrosive, ≥ 6.5 and ≤ 7.5 =stable				

increasing corrosive tendency

14.6

<6.5=scaling, >7,5=corrosive, ≥6.5 and ≤7.5=stable

Applies to water in the pH range 7-8

which also contains dissolved oxygen

ratios <0.2 no corrosive properties

ratios >0.2 increasing corrosive tendency

Corrosivity ratio

Approved Technical Signatory Ms. Manuela Mayer

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Remark:

Overall classification of water, considering only constituents that have been tested for: Group D: high risk or water unsuitable for human consumption

Interpretation based on guidelines for the evaluation of drinking water for human consumption, DWA, Namibia, April 1988 and South African Water Quality Guidelines Volume 5: Agricultural water use: Livestock watering, Second Edition, 1996

For practical reasons, the guidelines are divided into four groups. The highest group assigned to any of the constituents determines the classification of the water as a whole. Group A: excellent quality water Group B: good quality water Group C: low risk water Group D: high risk or water unsuitable for human consumption

Ideally water should be either Group A or Group B. If water is classified as Group C, the situation is not yet critical, but attention should be given to those constituents over the Group B limit. If however, the water is classified as Group D urgent and immediate attention is required to reduce the levels of the problem constituents in the water to suitable levels.

Sample acceptance:Sample was collected in bottles provided by the laboratory.
Sample was suitable for testing

Approved Technical Signatory

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Assessment of water quality for human consumption

Naturally occurring chemicals that are of health significance in drinking water

Fluoride: Exposure to high levels of fluoride, which occurs naturally, can lead to mottling of teeth and, in severe cases, crippling skeletal fluorosis.

1.0-1.5 mg/l fluoride: slight mottling of dental enamel may occur in sensitive individuals. No other health effects are expected

Chemicals from agricultural activities that are of health significance in drinking water Nitrate and nitrite: In water it has been associated with methaemoglobinaemia, especially in bottle-fed infants 0-6 mg/l nitrate as N: no adverse health effects

Some of the naturally occurring chemicals which occur in drinking water at concentrations below those at which toxic effects may occur.

Chloride: high concentrations of chloride give a salty taste to water. Concentrations in excess of 250 mg/l are increasingly likely to be detected by taste.

Hardness: Depending on the interaction of other factors, such as, pH and alkalinity, water with a hardness above approximately 200 mg/l may cause scale deposition in the pipe work and tanks. On heating, hard waters form deposits of calcium carbonate scale.

pH: Optimum pH 6.5-8.

pH does not exert direct health effects, but may exert indirect health effects via metal solubility.

Sodium: The average taste threshold for sodium is about 200 mg/l.

Sulphate: It is generally considered that the taste impairment is minimal at levels below 250 mg/l.

Magnesium: The average taste threshold for magnesium is about 70 mg/l

Total dissolved solids: The palatability of water with a TDS level of less than 600 mg/l is generally considered to be good; drinking water becomes significantly and increasingly unpalatable at TDS levels greater than about 1000 mg/l.

Turbidity is a measure of the light-scattering ability of water and is indicative of the concentration of suspended matter in water.

Microorganisms are often associated with turbidity, hence low turbidity minimises the potential for transmission of infectious diseases. Turbidity also affects the aesthetic quality of water.

Turbidity in water is caused by the presence of suspended matter which usually consists of a mixture of inorganic matter, such as clay and soil particles and organic matter.

Turbidity may also be associated with the presence of inorganic ions such as manganese(II) and iron(II).

The consumption of turbid water *per se* does not have any direct health effects, but associated effects due to microbial contamination or the ingestion of substances bound to particulate matter, do.

Aesthetic effects (appearance, taste, odour) of turbidity can be mitigated or removed by decantation or by filtration (or by both), accelerated, if necessary, by previous aeration

Approved Technical Signatory Ms. Manuela Mayer This test report is only valid without any

Walvis Bay:

walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

TEST REPORT

48 Grosvenor Road Date received: 26/Jan/22 Brianston 2191 South Africa Date analysed: 8 February - 28 March 2022 Attr: Ms Megan Edwards Client Reference no.: Quotation no: QU-6835 e-mail: megan.edwards@digbywells.com Quotation no: QU-6835 Tet: +27 11 789 9495 Lab Reference no:: Bereribtion of sampling point Uis, Afritin mine Description of sampling point Uis, Afritin mine Evention of sampling 2022/01/21; 18:00 Evention 0 Stampling Evention	To:	Digby Wells Envir	onmental SA (P	'ty) Ltd.					
Brianston 2191 South Africa Date analysed: Date reported: 29/Mar/22 28 March 2022 Date reported: 29/Mar/22 Attn: Ms Megan Edwards e-mail: megan edwards@0igbywells.com Client Reference no: 20/E835 AFT-7220 e-mail: megan edwards@0igbywells.com Cuotation no: 202280 Cuotation no: Enquiries: MS Manuela Mayer Sample details borehole water Lab Reference: 1220280/30 IZ20270/121; 18:00 Date of sampling Date of sampling Ph t 6.9 A Group A Group C watering Parameter Value Units Classification Group A Group C watering Ph de.9 A 6-9 5.5-3.6 4-11 1 5 10 Total Disolved Solids (calc). 7132 mg/l D 150 300 400 P-Atadness as CaCO ₃ 0 mg/l 1 5 10 6000 Caladreses as CaCO ₃ 1231 mg/l D 375 500 1000 2500 Ph de for sampling 137 mg/l D 250 600 1200		48 Grosvenor Road			Dat	e received:	26/Jan/22		
South Africa Date reported: 29/Mar/22 Attn: Ms Megan Edwards Client Reference no: AFT-7220 e-mail: megan.edwards@digbywells.com Quotation no: QU-6835 Tel: +2711789 9495 Lab Reference: 1220280 Sample details borehole water Location of sampling point BH6-5 Description of sampling point BH6-5 Enquiries: Ms Manuela Mayer Parameter Value Units Classification Group A Group B Group C water p H 6.9 A 6.9 5.5-9.5 4-11 Livestock p H 6.9 NTU A 1 5 10 p H 6.9 NG 650 1300 400 Total Dissolved Solids (calc.) 7132 mg/l 1 5 10 Total Alkalinity as CaCO3 405 mg/l 1 5 100 Cal-Hardness as CaCO3 1231 mg/l 0 375 500 1000 <t< th=""><th></th><th>Brtanston 2191</th><th></th><th></th><th>Date</th><th>e analysed:</th><th>8 February -</th><th>28 March 20</th><th>22</th></t<>		Brtanston 2191			Date	e analysed:	8 February -	28 March 20	22
Attr:Ms Megan Edwards megan.edwards@digbywells.com Tel:Client Reference: 22020 Lab Reference: 22020 L20200 Enquiries:Ms anuela MayerSample details boercholo of sampling point Date of sampling Det of sampling 2022/01/21; 18:00 Test item numberborehole water UIS, Afritin mine BH6-5 2022/01/21; 18:00 Test item numberRecommended mayer Ms anuelaList Ms anuelaParameter P HValue 6.9M6-9 6-9Group AGroup BGroup C watering wateringLivestock wateringPh6.9A6-95.5-9.54-11LivestockElectrical Conductivity Total Dissolved Solids (calc.) 7132 Ca-Hardness as CaCO30mg/l55.9.54-116000P-Alkalinity as CaCO3 Ca-Hardness as CaCO30mg/l55.9.5106000600060002500Mg-Hardness as CaCO3 Ca-Hardness as CaCO31557 1577mg/lD30065013002500Mg-Hardness as CaCO3 Cholide as Gr1557 1579mg/lD20060012001500-3000Fluoride as F Potassium as N Adu4.0 4.0 4.0mg/lA1.02.01000Nitrite as N-0.01 4.01mg/lD20060012001500-3000Nitrite as N-0.01 4.01mg/lA1.02.01000Nitrite as N-0.01 4.01mg/lA1.02.01000Nitrite as N-0.01 4.02mg		South Africa			Dat	e reported:	29/Mar/22		
e-mail: megan.edwards@digbywells.com Tel: 4.27 17.89 9495 Lab Federence: 1220280 Lab Reference: 1220280 Enquiries: Ms anuela Mayer Sample details borehole water Uis, Afritin mine BH6-5 Enquiries: Ms anuela Mayer Description of sampling point BH6-5 Encuiries: Ms anuela Mayer Test item number 2022/01/21; 18:00 Test item number 2022/01/21; 18:00 Test item number 2022/01/21; 18:00 Test item number 1220280/30 Ferameter Value Units Classification Group A Group C watering Ph 6.9 A 6-9 5.5-9.5 4-11 Electrical Conductivity 1147 mS/m D 150 300 400 Turbidity 0.20 NTU A 1 5 10 Total Mkalinity as CaCO ₃ 0	Attn:	Ms Megan Edwards			Client Refe	erence no.:	AFT-7220		
Lab Reference: Lab Reference: L20280 Enquiries: Ms Manuela Mayer Barle details borehole water Location of sampling point Date of sampling point BH6-5 BH6-5 Exermended mathematication Secription of sampling point BH6-5 Pate of sampling point BH6-5 Livestock Pate of sampling point BH6-5 Livestock Pate of sampling point BH6-5 Livestock Pate of sampling point State of sampling point Livestock Pate of sampling point Livestock Total Alstalinty as CaCO ₃ 0 <th>e-mail:</th> <th>megan.edwards@dig</th> <th>bywells.com</th> <th></th> <th>Que</th> <th>otation no.:</th> <th>QU-6835</th> <th></th> <th></th>	e-mail:	megan.edwards@dig	bywells.com		Que	otation no.:	QU-6835		
Sample details borehole water Location of sampling point BH6-5 Description of sampling point BH6-5 2022/01/21; 18:00 2022/01/21; 18:00 Test item number 1220280/30 Parameter Value Units Classification Group A Group B Group C watering p H 6.9 A 6-9 5.5-9.5 4-11 Livestock Turbidity 0.20 NTU A 1 5 10 600 P-Alkalinity as CaCO ₃ 0 mg/l 5 500 1000 2500 Pathantinity as CaCO ₃ 0 mg/l D 300 650 1300 Ca-Hardness as CaCO ₃ 2788 mg/l D 300 650 1200 Ca-Hardness as CaCO ₃ 1557 mg/l D 200 400 2057 Choide as Cf 2857 mg/l D 200 600 1200 1000 Sulphate as SO ₄ ²² 1579 mg/l <th>Tel:</th> <th>+27 11 789 9495</th> <th></th> <th></th> <th>Lab</th> <th>Reference:</th> <th>1220280</th> <th></th> <th></th>	Tel:	+27 11 789 9495			Lab	Reference:	1220280		
Sample details borehole water Location of sampling point Uis, Afritin mine Description of sampling point BH6-5 Date of sampling 2022/01/21; 18:00 Test item number 1220280/30 Recommended maximum limits Parameter Value Units Classification Group A Group B Group C watering p H 6.9 A 6-9 5.5-9.5 4-11 Electrical Conductivity 1147 mS/m D 150 300 400 Turbidity 0.20 NTU A 1 5 10 6000 P-Alkalinity as CaCO ₃ 0 mg/l 6000 2500 6001 2500 6000 2500 Ga-Hardness as CaCO ₃ 1231 mg/l D 375 500 1000 2500 Ga-Hardness as CaCO ₃ 1287 mg/l D 220 600 1200 150-3000 Fluoride as Cl 2857 mg/l D 200 600 </th <th></th> <th></th> <th></th> <th></th> <th>Enq</th> <th>uiries: Ms N</th> <th>1anuela Mayer</th> <th></th> <th></th>					Enq	uiries: Ms N	1anuela Mayer		
Location of sampling point Date of sampling point Date of sampling point 2022/01/21; 18:00 Uis, Afritin mine BH6-5 2022/01/21; 18:00 Set of sampling 2022/01/21; 18:00 Becommended multication Human consumption Livestock Parameter Value Units Classification Group A Group B Group C watering p H 6.9 A 6-9 5.5-9.5 4-11 Livestock Parameter Value Units Classification Group A Group B Group C watering p H 6.9 A 6-9 5.5-9.5 4-11 Livestock Total Dissolved Solids (calc.) 7132 mg/l D 150 300 400 400 P-Alkalinity as CaCO ₃ 0 mg/l D 300 650 1300 Cacenhand Ca-Hardness as CaCO ₃ 1231 mg/l D 300 650 1300 Cacenhand Ca-Hardness as CaCO ₃ 1231 mg/l D 200 600 1200 1500-3000 Group A as CaCO ₃ 2857	Sample det	tails	borehole wate	r					
Description of sampling point Date of sampling BH6-5 2022/01/21; 18:00 1220280/30 BH6-5 2022/01/21; 18:00 1220280/30 Event the transmet of the transmet of the transmet of transmetor o	Location of	f sampling point	Uis, Afritin min	ie					
Date of sampling Test item number 2022/01/21; 18:00 120280/30 Test item number 220280/30 Parameter Value Units Classification Group A Group B Group C watering P H 6.9 A 6-9 5.5-9.5 4-11 Livestock Turbidity 0.20 NTU A 1 5 10 6000 Turbidity 0.20 NTU A 11 5 10 6000 P-Alkalinity as CaCO ₃ 0 mg/l Cassification 300 650 1300 2500 Total Alkalinity as CaCO ₃ 0 mg/l D 300 650 1300 2500 Total Alkalinity as CaCO ₃ 2788 mg/l D 300 650 1300 2500 Ga-Hardness as CaCO ₃ 1557 mg/l D 290 420 840 2057 Chide as Cl ⁺ 1.3 mg/l D 200 6000 1200 1500-3000 <	Description	n of sampling point	BH6-5						
Test item number I220280/30 Parameter Value Units Classification Group A Group B Group B Group C watering p H 6.9 A 6-9 5.5-9.5 4-11 Livestock Turbidity 0.20 NTU A 1 5 10 - Total Dissolved Solids (calc.) 7132 mg/l - - 6000 - 6000 - 6000 - 6000 - 6000 - 6000 - 6000 - 6000 - 6000 - 6000 - 6000 2500 6000 1200 1500 2500 600 1200 1500-3000 2500 600 1200 1500-3000 2500 600 1200 1500-3000 2500 600 1200 1500-3000 1500-3000 1500-3000 1500-3000 1500-3000 1500-3000 1500-3000 1500-3000 1500-3000 1000 1000 1000 100 1000	Date of san	npling	2022/01/21; 18:	00					
Beammeter Value Units Classification Group A Group B Group A Group B Group C Livestock p H 6.9 A 6-9 5.5-9.5 4-11 Livestock Electrical Conductivity 1147 mS/m D 150 300 400	Test item n	umber	1220280/30						
Parameter Value Units Classification Group A Group B Group C watering p H 6.9 A 6-9 5.5-9.5 4-11 Electrical Conductivity 1147 mS/m D 150 300 400 Turbidity 0.20 NTU A 1 5 10 5.5-9.5 4.11 5 10 Turbidity 0.20 NTU A 1 5 10 5.5-9.5 4.01 5 10 5.5-9.5 4.01 5 10 5.5-9.5 4.01 5 10 5.00 100 20 NTU A 1 5 10 5.5-9.5 10 5.5-9.5 10 5.5-9.5 10 5.5-9.5 10 5.5-9.5 10 5.5-9.5 10 5.5-9.5 10 5.5-9.5 10 5.5-9.5 10 5.5-9.5 10 5.5-9.5 10 5.5-9.5 10 5.5-9.5 10.5 2.01 10.5 10.5 2.01 10.5 10.5<						imits			
Parameter Value Units Classification Group A Group B Group C watering p H 6.9 A 6-9 5.5-9.5 4-11 Electrical Conductivity 1147 mS/m D 150 300 400 Turbidity 0.20 NTU A 1 5 10 6000 P-Alkalinity as CaCO ₃ 0 mg/l - 55.9.5 4.11 6000 P-Alkalinity as CaCO ₃ 0 mg/l - 50 10 6000 P-Alkalinity as CaCO ₃ 0 mg/l - - 6000 200 Ca-Hardness as CaCO ₃ 1231 mg/l D 375 500 1000 2500 Mg-Hardness as CaCO ₃ 1557 mg/l D 200 600 1200 1500-3000 Fluoride as F 1.3 mg/l A 1.5 2.0 3.0 2.0-6.0 Sulphate as S0 ₄ ² 1579 mg/l D 200	_					Hu	iman consum	ption	Livestock
p H 6.9 A 6-9 5.5-9.5 4-11 Electrical Conductivity 1147 mS/m D 150 300 400 Turbidity 0.20 NTU A 1 5 10 Total Dissolved Solids (calc.) 7132 mg/l I 5 10 P-Alkalinity as CaCO ₃ 0 mg/l I 5 10 Total Alkalinity as CaCO ₃ 0 mg/l D 300 650 1300 Ca-Hardness as CaCO ₃ 1231 mg/l D 375 500 1000 2500 Mg-Hardness as CaCO ₃ 1231 mg/l D 250 600 1200 1500-3000 Glaid Hardness as CaCO ₃ 1557 mg/l D 250 600 1200 150-3000 Glaid Hardness as CaCO ₃ 1557 mg/l D 200 600 1200 150-3000 Fluoride as F' 1.3 mg/l A 1.5 2.0 3.0 2.0-6.0 Sulphate as SO ₄ ²⁻ 1579 mg/l D 200	Parameter		Value	Units	Classification	Group A	Group B	Group C	watering
Leterical Conductivity 1147 ms/m D 150 300 400 Turbidity 0.20 NTU A 1 5 10 Total Dissolved Solids (calc.) 7132 mg/l 6000 6000 P-Alkalinity as CaCO ₃ 0 mg/l 6000 650 1300 Total Alkalinity as CaCO ₃ 2788 mg/l D 300 650 1300 Ca-Hardness as CaCO ₃ 1231 mg/l D 375 500 1000 2500 Mg-Hardness as CaCO ₃ 1557 mg/l D 290 420 840 2057 Chloride as Cl 2857 mg/l D 200 600 1200 1500-3000 Fluoride as F ² 1.3 mg/l A 1.5 2.0 3.0 2.0-6.0 Sulphate as SO ₄ ² 1579 mg/l D 200 600 1200 1000 Nitrate as N <.0.01 mg/l A 10 20	рН		6.9	0/	A	6-9	5.5-9.5	4-11	
Turbinity 0.20 NTU A I 5 10 Total Dissolved Solids (calc.) 7132 mg/l 6000 P-Alkalinity as CaCO ₃ 0 mg/l 700 650 1300 Total Alkalinity as CaCO ₃ 405 mg/l 0 300 650 1300 Ca-Hardness as CaCO ₃ 1231 mg/l D 375 500 1000 2500 Mg-Hardness as CaCO ₃ 1557 mg/l D 290 420 840 2057 Chloride as Cl' 2857 mg/l D 250 600 1200 1500-3000 Fluoride as F ^r 1.3 mg/l A 1.5 2.0 3.0 2.0-6.0 Sulphate as SO ₄ ²⁻ 1579 mg/l D 200 600 1200 1000 Nitrite as N 4.0 mg/l A 10 20 40 100 Nitrite as N <0.01 mg/l A 100 400 800 2000 Noting as Na <0.02 mg/l D 100	Electrical C	conductivity	1147	mS/m	D	150	300	400	
Total Dissolved Solids (calc.) 7132 mg/l 6000 P-Alkalinity as CaCO ₃ 0 mg/l 5000 Total Alkalinity as CaCO ₃ 405 mg/l 0 300 650 1300 Ca-Hardness as CaCO ₃ 1231 mg/l D 300 650 1000 2500 Mg-Hardness as CaCO ₃ 1557 mg/l D 290 420 840 2057 Chloride as Cl ⁻ 2857 mg/l D 250 600 1200 1500-3000 Fluoride as F ⁻ 1.3 mg/l A 1.5 2.0 3.0 2.0-6.0 Sulphate as SO ₄ ²⁻ 1579 mg/l D 200 600 1200 1000 Nitrite as N 4.0 mg/l A 10 20 40 100 Nitrite as N <0.01 mg/l A 100 400 800 2000 Notifie as N <0.02 mg/l D 100 400 800 2000 Namonium as N <0.02 mg/l D 70 1	Turbialty	lucid Oalida (aala)	0.20	NIU mar/l	A	I	5	10	C000
Pr-Akainity as CaCO3 0 mg/l Total Alkalinity as CaCO3 405 mg/l D 300 650 1300 Ca-Hardness as CaCO3 2788 mg/l D 375 500 1000 2500 Ca-Hardness as CaCO3 1231 mg/l D 375 500 1000 2500 Chloride as Cl ² 2857 mg/l D 290 420 840 2057 Chloride as Cl ² 2857 mg/l D 2500 600 1200 1500-3000 Fluoride as F ² 1.3 mg/l A 1.5 2.0 3.0 2.0-6.0 Sulphate as SO4 ²² 1579 mg/l D 200 600 1200 1000 Nitrite as N 4.0 mg/l A 10 20 40 100 Nitrite as N <0.01	Total Disso	lived Solids (calc.)	/132	mg/I					6000
Total Ankaninity as CaCO3 2788 mg/l D 300 650 1300 Total Hardness as CaCO3 1231 mg/l D 375 500 1000 2500 Mg-Hardness as CaCO3 1557 mg/l D 290 420 840 2057 Chloride as Cl [°] 2857 mg/l D 250 600 1200 1500-3000 Fluoride as F [°] 1.3 mg/l A 1.5 2.0 3.0 2.0-6.0 Sulphate as SO4 ²⁻ 1579 mg/l D 200 600 1200 1000 Nitrite as N 4.0 mg/l A 10 20 40 100 Ammonium as N <0.01	P-Alkalinity	$/ as CaCO_3$	0	mg/I					
Total Hardness as CaCO3 2788 mg/l D 300 650 1300 Ca-Hardness as CaCO3 1231 mg/l D 375 500 1000 2500 Mg-Hardness as CaCO3 1557 mg/l D 290 420 840 2057 Chloride as Cl 2857 mg/l D 250 600 1200 1500-3000 Fluoride as F [*] 1.3 mg/l A 1.5 2.0 3.0 2.0-6.0 Sulphate as SO42 ^{2*} 1579 mg/l D 200 600 1200 1000 Nitrite as N 4.0 mg/l A 10 20 40 100 Nitrite as N <0.01 mg/l A 10 20 40 100 Ammonium as N <0.02 mg/l D 100 400 800 2000 Potassium as K 81 mg/l D 70 100 200 500 Calcium as Ca 493 mg/l D 150 200 400 1000		Inity as $CaCO_3$	405	mg/l	D	200	050	1000	
Ca-naronises as CaCO3 1231 mg/l D 375 500 1000 2500 Mg-Hardness as CaCO3 1557 mg/l D 290 420 840 2057 Chloride as Cl ⁻ 2857 mg/l D 250 600 1200 1500-3000 Fluoride as F ⁻ 1.3 mg/l A 1.5 2.0 3.0 2.0-6.0 Sulphate as SO ₄ ²⁻ 1579 mg/l D 200 600 1200 1000 Nitrate as N 4.0 mg/l A 10 20 40 100 Nitrite as N <0.01 mg/l A 10 20 40 100 Nitrite as N <0.02 mg/l T 10 100 400 800 2000 Potassium as Na 1482 mg/l D 100 400 800 2000 500 Magnesium as Mg 378 mg/l D 70 100 200 500 Calcium as Ca 493 mg/l D 150 200 400<		less as $CaCO_3$	2/88	mg/i	D	300	65U	1300	2500
Mg-nardness as CaCO3 1557 mg/l D 290 420 640 2057 Chloride as Cl' 2857 mg/l D 250 600 1200 1500-3000 Fluoride as F' 1.3 mg/l A 1.5 2.0 3.0 2.0-6.0 Sulphate as SO4 ²⁻ 1579 mg/l D 200 600 1200 1000 Nitrate as N 4.0 mg/l A 10 20 40 100 Nitrate as N 4.0 mg/l A 10 20 40 100 Nitrate as N <0.01	Ca-maranes		1231	mg/i	D	375	500	1000	2500
Chiloride as Ci 2837 Ing/l D 250 600 1200 1500-5000 Fluoride as F' 1.3 mg/l A 1.5 2.0 3.0 2.0-6.0 Sulphate as SO ₄ ²⁻ 1579 mg/l D 200 600 1200 1000 Nitrate as N 4.0 mg/l A 10 20 40 100 Nitrate as N <0.01 mg/l A 10 20 40 100 Nitrite as N <0.01 mg/l A 10 20 40 100 Ammonium as N <0.02 mg/l D 100 400 800 2000 Potassium as K 81 mg/l D 100 400 800 2000 Magnesium as Mg 378 mg/l D 70 100 200 500 Calcium as Ca 493 mg/l D 150 200 400 1000 Manganese as Mn <0.02 mg/l A 0.1 1.0 2.0 10 Iron as	Mg-narone		1007	mg/i	D	290	420	040	2037
Fildoride as F 1.3 Ing/l A 1.3 2.0 3.0 2.0-0.0 Sulphate as SO4 ²⁻ 1579 mg/l D 200 600 1200 1000 Nitrate as N 4.0 mg/l A 10 20 40 100 Nitrate as N <0.01 mg/l A 10 20 40 100 Nitrite as N <0.02 mg/l A 10 20 40 100 Ammonium as N <0.02 mg/l D 100 400 800 2000 Potassium as K 81 mg/l D 70 100 200 500 Calcium as Ca 493 mg/l D 70 100 200 500 Calcium as Ca 493 mg/l D 150 200 400 1000 Manganese as Mn <0.02 mg/l A 0.1 1.0 2.0 10 Iron as Fe <0.02 mg/l A 0.1 1.0 2.0 10 Stability pH, at 25°C <th>Chioride as</th> <th></th> <th>2007</th> <th>mg/i</th> <th></th> <th>200</th> <th>000</th> <th>1200</th> <th>1500-3000</th>	Chioride as		2007	mg/i		200	000	1200	1500-3000
Sulprate as SO4 1579 mg/l D 200 600 1200 1000 Nitrate as N 4.0 mg/l A 10 20 40 100 Nitrite as N <0.01 mg/l A 10 20 40 100 Ammonium as N <0.02 mg/l 10 10 400 800 2000 Potassium as Na 1482 mg/l D 100 400 800 2000 Potassium as K 81 mg/l A 200 400 800 2000 Magnesium as Mg 378 mg/l D 70 100 200 500 Calcium as Ca 493 mg/l D 150 200 400 1000 Manganese as Mn <0.02 mg/l A 0.05 1.0 2.0 10 Iron as Fe <0.02 mg/l A 0.1 1.0 2.0 10 Stability pH, at 25°C 6.3 >0=scaling, <0=corrosive, 0=stable >0=scaling, <0=corrosive, 0=stable	Fluoride as		1.3	mg/i	A	1.5	2.0	3.0	2.0-6.0
Nitrate as N 4.0 Ing/l A 10 20 40 100 Nitrite as N <0.01	Sulphate as	s 50 ₄	1579	mg/i		200	20	1200	1000
Ammonium as N <0.01	Nitrito oo N		4.0	mg/l	A	10	20	40	100
Animolium as N <0.02	Ammonium		<0.01	mg/l					10
Potassium as Ka 81 mg/l A 200 400 800 2000 Magnesium as Mg 378 mg/l D 70 100 200 500 Calcium as Ca 493 mg/l D 70 100 200 500 Manganese as Mn <0.02	Sodium as	Na	<0.02 1/182	mg/l	D	100	400	800	2000
Magnesium as Mg 378 mg/l D 70 100 200 500 Magnesium as Mg 378 mg/l D 70 100 200 500 Calcium as Ca 493 mg/l D 150 200 400 1000 Manganese as Mn <0.02	Botaccium	ina ac K	1402 91	mg/l	Δ	200	400	800	2000
Magnesitin as Mg 376 Ing/l D 76 100 200 300 Calcium as Ca 493 mg/l D 150 200 400 1000 Manganese as Mn <0.02	Magnosium		279	mg/l		200	400	200	500
Manganese as Mn <0.02	Calcium as	as wy	370 703	mg/l	D	150	200	200	1000
Iron as Fe <0.02	Manganeee	as Mn	~0 02	mg/l	Δ	0.05	1.0	20	10
Stability pH, at 25°C6.3Langelier Index0.6scaling>0=scaling, <0=corrosive, 0=stable	Iron as Fo	Manganese as Mn		ma/l	Δ	0.00	1.0	2.0	10
Langelier Index 0.6 scaling >0=scaling, <0=corrosive, 0=stable	Stability nH	l at 25°C	<0.0Z 6 3	iiig/i	Γ	0.1	1.0	2.0	10
	Langelier h	ndex	0.0	scaling		>0=scalina ~	N=corrosive 0-s	table	
Byznar Index 5.7 scaling <6.5 = scaling >7.5 = corrosive >6.5 and <7.5 = stable	Rvznar Inde	ex	5.7	scaling	<6.5 = scaling, >7.5 = corresive, >6.5 and <7.5 = stable				

<6.5=scaling, >7,5=corrosive, ≥6.5 and ≤7.5=stable increasing corrosive tendency

Applies to water in the pH range 7-8

which also contains dissolved oxygen

ratios <0.2 no corrosive properties

ratios >0.2 increasing corrosive tendency

Corrosivity ratio

Approved Technical Signatory Ms. Manuela Mayer

This test report is only valid without any alterations and shall not be published or reproduced except in full, with written consent of the Page 1 of 3 laboratory.

14.0

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Remark:

Overall classification of water, considering only constituents that have been tested for: Group D: high risk or water unsuitable for human consumption

Interpretation based on guidelines for the evaluation of drinking water for human consumption, DWA, Namibia, April 1988 and South African Water Quality Guidelines Volume 5: Agricultural water use: Livestock watering, Second Edition, 1996

For practical reasons, the guidelines are divided into four groups. The highest group assigned to any of the constituents determines the classification of the water as a whole. Group A: excellent quality water Group B: good quality water Group C: low risk water Group D: high risk or water unsuitable for human consumption

Ideally water should be either Group A or Group B. If water is classified as Group C, the situation is not yet critical, but attention should be given to those constituents over the Group B limit. If however, the water is classified as Group D urgent and immediate attention is required to reduce the levels of the problem constituents in the water to suitable levels.

Sample acceptance:Sample was collected in bottles provided by the laboratory.
Sample was suitable for testing

Approved Technical Signatory

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Assessment of water quality for human consumption

Naturally occurring chemicals that are of health significance in drinking water

Fluoride: Exposure to high levels of fluoride, which occurs naturally, can lead to mottling of teeth and, in severe cases, crippling skeletal fluorosis.

1.0-1.5 mg/l fluoride: slight mottling of dental enamel may occur in sensitive individuals. No other health effects are expected

Chemicals from agricultural activities that are of health significance in drinking water Nitrate and nitrite: In water it has been associated with methaemoglobinaemia, especially in bottle-fed infants 0-6 mg/l nitrate as N: no adverse health effects

Some of the naturally occurring chemicals which occur in drinking water at concentrations below those at which toxic effects may occur.

Chloride: high concentrations of chloride give a salty taste to water. Concentrations in excess of 250 mg/l are increasingly likely to be detected by taste.

Hardness: Depending on the interaction of other factors, such as, pH and alkalinity, water with a hardness above approximately 200 mg/l may cause scale deposition in the pipe work and tanks. On heating, hard waters form deposits of calcium carbonate scale.

pH: Optimum pH 6.5-8.

pH does not exert direct health effects, but may exert indirect health effects via metal solubility.

Sodium: The average taste threshold for sodium is about 200 mg/l.

Sulphate: It is generally considered that the taste impairment is minimal at levels below 250 mg/l.

Magnesium: The average taste threshold for magnesium is about 70 mg/l

Total dissolved solids: The palatability of water with a TDS level of less than 600 mg/l is generally considered to be good; drinking water becomes significantly and increasingly unpalatable at TDS levels greater than about 1000 mg/l.

Turbidity is a measure of the light-scattering ability of water and is indicative of the concentration of suspended matter in water.

Microorganisms are often associated with turbidity, hence low turbidity minimises the potential for transmission of infectious diseases. Turbidity also affects the aesthetic quality of water.

Turbidity in water is caused by the presence of suspended matter which usually consists of a mixture of inorganic matter, such as clay and soil particles and organic matter.

Turbidity may also be associated with the presence of inorganic ions such as manganese(II) and iron(II).

The consumption of turbid water *per se* does not have any direct health effects, but associated effects due to microbial contamination or the ingestion of substances bound to particulate matter, do.

Aesthetic effects (appearance, taste, odour) of turbidity can be mitigated or removed by decantation or by filtration (or by both), accelerated, if necessary, by previous aeration

Approved Technical Signatory Ms. Manuela Mayer This test report is only valid without any

Walvis Bay:

walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

TEST REPORT

To:	Digby Wells Environ	onmental SA (F	Pty) Ltd.					
	48 Grosvenor Road			Dat	e received:	26/Jan/22		
	Brtanston 2191			Date	e analysed:	8 February -	28 March 20	22
	South Africa			Dat	e reported:	29/Mar/22		
Attn:	Ms Megan Edwards			Client Ref	erence no.:	AFT-7220		
e-mail:	megan.edwards@dig	bywells.com		Que	otation no.:	QU-6835		
Tel:	+27 11 789 9495			Lab	Reference:	1220280		
				Enq	uiries: Ms N	/lanuela Mayer		
Sample det	ails	borehole wate	er					
Location of	f sampling point	Uis, Afritin mir	ne					
Description	n of sampling point	BH8-1						
Date of san	npling	2022/01/22; 22	:00					
Test item n	umber	1220280/31						
					R	ecommended	maximum li	imits
_					Hu	iman consum	ption	Livestock
Parameter		Value	Units	Classification	Group A	Group B	Group C	watering
p H		7.3		A	6-9	5.5-9.5	4-11	
Electrical C	onductivity	1107	m5/m	D	150	300	400	
Turbidity		5.8	NIU	C	I	5	10	0000
Total Disso	lived Solids (calc.)	6924	mg/l					6000
P-Alkalinity		0	mg/I					
	inity as CaCO ₃	200	mg/l	5		050	1000	
Total Hardr	ness as CaCO ₃	2667	mg/I	D	300	650	1300	0500
Ca-Hardnes	ss as $CaCO_3$	1531	mg/l	D	375	500	1000	2500
Mg-Hardne	ss as CaCO ₃	1137	mg/l	D	290	420	840	2057
Chloride as	s Cl ⁻	2650	mg/l	D	250	600	1200	1500-3000
Fluoride as	; F	1.2	mg/l	A	1.5	2.0	3.0	2.0-6.0
Sulphate as	s SO ₄ ²	1444	mg/l	D	200	600	1200	1000
Nitrate as N	N	73	mg/l	D	10	20	40	100
Nitrite as N		0.61	mg/l					10
Ammonium	n as N	1.1	mg/l					
Sodium as	Na	1439	mg/l	D	100	400	800	2000
Potassium	as K	56	mg/l	A	200	400	800	
Magnesium	n as Mg	276	mg/l	D	70	100	200	500
Calcium as	Ca	613	mg/l	D	150	200	400	1000
Manganese	e as Mn	<0.02	mg/l	А	0.05	1.0	2.0	10
Iron as Fe		1.8	mg/l	С	0.1	1.0	2.0	10
Stability pH	l, at 25°C	6.5						
Langelier Index (0.8	scaling	>0=scaling, <0=corrosive, 0=stable				
Ryznar Index		5.7	scaling	<6.5=scaling, >7,5=corrosive, \geq 6.5 and \leq 7.5=stable				

increasing corrosive tendency

26.2

Applies to water in the pH range 7-8

which also contains dissolved oxygen

ratios <0.2 no corrosive properties

ratios >0.2 increasing corrosive tendency

Corrosivity ratio

Approved Technical Signatory Ms. Manuela Mayer

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Remark:

Overall classification of water, considering only constituents that have been tested for: Group D: high risk or water unsuitable for human consumption

Interpretation based on guidelines for the evaluation of drinking water for human consumption, DWA, Namibia, April 1988 and South African Water Quality Guidelines Volume 5: Agricultural water use: Livestock watering, Second Edition, 1996

For practical reasons, the guidelines are divided into four groups. The highest group assigned to any of the constituents determines the classification of the water as a whole. Group A: excellent quality water Group B: good quality water Group C: low risk water Group D: high risk or water unsuitable for human consumption

Ideally water should be either Group A or Group B. If water is classified as Group C, the situation is not yet critical, but attention should be given to those constituents over the Group B limit. If however, the water is classified as Group D urgent and immediate attention is required to reduce the levels of the problem constituents in the water to suitable levels.

Sample acceptance:Sample was collected in bottles provided by the laboratory.
Sample was suitable for testing

Approved Technical Signatory

Ms. Manuela Mayer This test report is only valid without any alterations and shall not be published or reproduced except in full, with written consent of the laboratory. Page 2 of 3

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Assessment of water quality for human consumption

Naturally occurring chemicals that are of health significance in drinking water

Fluoride: Exposure to high levels of fluoride, which occurs naturally, can lead to mottling of teeth and, in severe cases, crippling skeletal fluorosis.

1.0-1.5 mg/l fluoride: slight mottling of dental enamel may occur in sensitive individuals. No other health effects are expected

Chemicals from agricultural activities that are of health significance in drinking water Nitrate and nitrite: In water it has been associated with methaemoglobinaemia, especially in bottle-fed infants >20 mg/l nitrate as N: methemoglobinaemia occurs in infants. Occurrence of mucous membrane irritation in adults

Some of the naturally occurring chemicals which occur in drinking water at concentrations below those at which toxic effects may occur.

Chloride: high concentrations of chloride give a salty taste to water. Concentrations in excess of 250 mg/l are increasingly likely to be detected by taste.

Hardness: Depending on the interaction of other factors, such as, pH and alkalinity, water with a hardness above approximately 200 mg/l may cause scale deposition in the pipe work and tanks. On heating, hard waters form deposits of calcium carbonate scale.

pH: Optimum pH 6.5-8.

pH does not exert direct health effects, but may exert indirect health effects via metal solubility.

Sodium: The average taste threshold for sodium is about 200 mg/l.

Sulphate: It is generally considered that the taste impairment is minimal at levels below 250 mg/l.

Magnesium: The average taste threshold for magnesium is about 70 mg/l

Total dissolved solids: The palatability of water with a TDS level of less than 600 mg/l is generally considered to be good; drinking water becomes significantly and increasingly unpalatable at TDS levels greater than about 1000 mg/l.

Turbidity is a measure of the light-scattering ability of water and is indicative of the concentration of suspended matter in water.

Microorganisms are often associated with turbidity, hence low turbidity minimises the potential for transmission of infectious diseases. Turbidity also affects the aesthetic quality of water.

Turbidity in water is caused by the presence of suspended matter which usually consists of a mixture of inorganic matter, such as clay and soil particles and organic matter.

Turbidity may also be associated with the presence of inorganic ions such as manganese(II) and iron(II).

The consumption of turbid water *per se* does not have any direct health effects, but associated effects due to microbial contamination or the ingestion of substances bound to particulate matter, do.

Aesthetic effects (appearance, taste, odour) of turbidity can be mitigated or removed by decantation or by filtration (or by both), accelerated, if necessary, by previous aeration

Approved Technical Signatory Ms. Manuela Mayer This test report is only valid without a

This test report is only valid without any alterations and shall not be published or reproduced except in full, with written consent of the laboratory. Page 3 of 3

Walvis Bay:

walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

TEST REPORT

To:	Digby Wells Enviro	onmental SA (Pty	y) Ltd.							
	48 Grosvenor Road			Dat	e received:	26/Jan/22				
	Brtanston 2191			Date	e analysed:	8 February -	28 March 20	22		
South Africa				Date reported: 29/Mar/22						
Attn:	Ms Megan Edwards			Client Beference no · AFT-7220						
e-mail:	megan.edwards@digt	ovwells.com		Que	otation no.:	QU-6835				
Tel	+27 11 789 9495	,,		Lab	Reference:	1220280				
1011				Enq	uiries: Ms N	lanuela Mayer				
Sample det	tails	borehole water								
Location of	f sampling point	Uis, Afritin mine								
Description	n of sampling point	BH8-2								
Date of san	npling	2022/01/23; 9:40)							
Test item n	umber	1220280/32								
					R	ecommended	maximum li	imits		
					Hu	iman consum	ption	Livestock		
Parameter		Value	Units	Classification	Group A	Group B	Group C	watering		
рН		7.0		A	6-9	5.5-9.5	4-11			
Electrical C	Conductivity	921	mS/m	D	150	300	400			
Turbidity		0.15	NTU	A	1	5	10			
Total Disso	olved Solids (calc.)	5790	mg/l					6000		
P-Alkalinity	/ as CaCO ₃	0	mg/l							
Total Alkali	inity as CaCO ₃	195	mg/l							
Total Hardr	ness as CaCO ₃	2115	mg/l	D	300	650	1300			
Ca-Hardnes	ss as $CaCO_3$	1209	mg/l	D	375	500	1000	2500		
Mg-Hardne	ss as CaCO ₃	906	mg/l	D	290	420	840	2057		
Chloride as	s Cl ⁻	2097	mg/l	D	250	600	1200	1500-3000		
Fluoride as	s F	1.3	mg/l	A	1.5	2.0	3.0	2.0-6.0		
Sulphate as	s SO ₄ ²⁻	1210	mg/l	D	200	600	1200	1000		
Nitrate as N	N	101	mg/l	D	10	20	40	100		
Nitrite as N	ļ	0.86	mg/l					10		
Ammonium	n as N	1.4	mg/l							
Sodium as	Na	1163	mg/l	D	100	400	800	2000		
Potassium	as K	50	mg/l	A	200	400	800			
Magnesium	n as Mg	220	mg/l	D	70	100	200	500		
Calcium as	a Ca	484	mg/l	D	150	200	400	1000		
Manganese	e as Mn	0.01	mg/l	А	0.05	1.0	2.0	10		
Iron as Fe		0.05	mg/l	А	0.1	1.0	2.0	10		
Stability pH	l, at 25°C	6.6								
Langelier I	ndex	0.4 s	caling	:	>0=scaling, <	0=corrosive, 0=st	able			
Ryznar Inde	ex	6.2 s ⁴	caling		<6.5=scaling,	>7,5=corrosive, >	<u>-</u> 6.5 and <u><</u> 7.5=	stable		

increasing corrosive tendency

21.6

Applies to water in the pH range 7-8

which also contains dissolved oxygen

ratios <0.2 no corrosive properties

ratios >0.2 increasing corrosive tendency

Corrosivity ratio

Approved Technical Signatory Ms. Manuela Mayer

This test report is only valid without any alterations and shall not be published or reproduced except in full, with written consent of the Page 1 of 3 laboratory.

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Remark:

Overall classification of water, considering only constituents that have been tested for: Group D: high risk or water unsuitable for human consumption

Interpretation based on guidelines for the evaluation of drinking water for human consumption, DWA, Namibia, April 1988 and South African Water Quality Guidelines Volume 5: Agricultural water use: Livestock watering, Second Edition, 1996

For practical reasons, the guidelines are divided into four groups. The highest group assigned to any of the constituents determines the classification of the water as a whole. Group A: excellent quality water Group B: good quality water Group C: low risk water Group D: high risk or water unsuitable for human consumption

Ideally water should be either Group A or Group B. If water is classified as Group C, the situation is not yet critical, but attention should be given to those constituents over the Group B limit. If however, the water is classified as Group D urgent and immediate attention is required to reduce the levels of the problem constituents in the water to suitable levels.

Sample acceptance:Sample was collected in bottles provided by the laboratory.
Sample was suitable for testing

Approved Technical Signatory

Ms. Manuela Mayer This test report is only valid without any alterations and shall not be published or reproduced except in full, with written consent of the laboratory. Page 2 of 3

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Assessment of water quality for human consumption

Naturally occurring chemicals that are of health significance in drinking water

Fluoride: Exposure to high levels of fluoride, which occurs naturally, can lead to mottling of teeth and, in severe cases, crippling skeletal fluorosis.

1.0-1.5 mg/l fluoride: slight mottling of dental enamel may occur in sensitive individuals. No other health effects are expected

Chemicals from agricultural activities that are of health significance in drinking water Nitrate and nitrite: In water it has been associated with methaemoglobinaemia, especially in bottle-fed infants >20 mg/l nitrate as N: methemoglobinaemia occurs in infants. Occurrence of mucous membrane irritation in adults

Some of the naturally occurring chemicals which occur in drinking water at concentrations below those at which toxic effects may occur.

Chloride: high concentrations of chloride give a salty taste to water. Concentrations in excess of 250 mg/l are increasingly likely to be detected by taste.

Hardness: Depending on the interaction of other factors, such as, pH and alkalinity, water with a hardness above approximately 200 mg/l may cause scale deposition in the pipe work and tanks. On heating, hard waters form deposits of calcium carbonate scale.

pH: Optimum pH 6.5-8.

pH does not exert direct health effects, but may exert indirect health effects via metal solubility.

Sodium: The average taste threshold for sodium is about 200 mg/l.

Sulphate: It is generally considered that the taste impairment is minimal at levels below 250 mg/l.

Magnesium: The average taste threshold for magnesium is about 70 mg/l

Total dissolved solids: The palatability of water with a TDS level of less than 600 mg/l is generally considered to be good; drinking water becomes significantly and increasingly unpalatable at TDS levels greater than about 1000 mg/l.

Turbidity is a measure of the light-scattering ability of water and is indicative of the concentration of suspended matter in water.

Microorganisms are often associated with turbidity, hence low turbidity minimises the potential for transmission of infectious diseases. Turbidity also affects the aesthetic quality of water.

Turbidity in water is caused by the presence of suspended matter which usually consists of a mixture of inorganic matter, such as clay and soil particles and organic matter.

Turbidity may also be associated with the presence of inorganic ions such as manganese(II) and iron(II).

The consumption of turbid water *per se* does not have any direct health effects, but associated effects due to microbial contamination or the ingestion of substances bound to particulate matter, do.

Aesthetic effects (appearance, taste, odour) of turbidity can be mitigated or removed by decantation or by filtration (or by both), accelerated, if necessary, by previous aeration

Approved Technical Signatory Ms. Manuela Mayer This test report is only valid without a

This test report is only valid without any alterations and shall not be published or reproduced except in full, with written consent of the laboratory. Page 3 of 3

Walvis Bay:

walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

TEST REPORT

To: Digby Wells Environmental SA (Pty) Ltd.									
48 Grosvenor Road				Date received: 26/Jan/22					
Brtanston 2191				Date analysed: 8 February - 28 March 2022					
	South Africa			Dat	e reported:	29/Mar/22			
Attn:	Ms Megan Edwards			Client Ref	erence no.:	AFT-7220			
e-mail:	megan.edwards@digt	oywells.com		Que	otation no.:	QU-6835			
Tel:	+27 11 789 9495			Lab	Reference:	1220280			
				Enq	uiries: Ms N	lanuela Mayer			
Sample det	tails	borehole water		•		•			
Location of	f sampling point	Uis, Afritin mine							
Description	n of sampling point	BH8-3							
Date of sar	npling	2022/01; 9:00							
Test item n	number	1220280/33							
	Recommended maximum lim					imits			
					Hu	man consum	ption	Livestock	
Parameter		Value	Units	Classification	Group A	Group B	Group C	watering	
рН		6.9		A	6-9	5.5-9.5	4-11		
Electrical C	Conductivity	885	mS/m	D	150	300	400		
Turbidity		0.20	NTU	A	1	5	10		
Total Disso	olved Solids (calc.)	5537	mg/l					6000	
P-Alkalinity	y as CaCO₃	0	mg/l						
Total Alkal	inity as CaCO ₃	185	mg/l						
Total Hardı	ness as CaCO ₃	2052	mg/l	D	300	650	1300		
Ca-Hardne	ss as $CaCO_3$	1171	mg/l	D	375	500	1000	2500	
Mg-Hardne	ss as CaCO₃	881	mg/l	D	290	420	840	2057	
Chloride as	s Cl ⁻	1982	mg/l	D	250	600	1200	1500-3000	
Fluoride as	s F	1.3	mg/l	A	1.5	2.0	3.0	2.0-6.0	
Sulphate as	s SO ₄ ²⁻	1133	mg/l	С	200	600	1200	1000	
Nitrate as N	N	99	mg/l	D	10	20	40	100	
Nitrite as N 0.91 mg/l					10				
Ammoniun	n as N	2.2	mg/l						
Sodium as	Na	1139	mg/l	D	100	400	800	2000	
Potassium	as K	48	mg/l	A	200	400	800		
Magnesium as Mg		214	ma/l	D	70	100	200	500	

Magnesium as Mg	214	mg/l	D	70	100
Calcium as Ca	469	mg/l	D	150	200
Manganese as Mn	<0.01	mg/l	А	0.05	1.0
Iron as Fe	0.02	mg/l	А	0.1	1.0
Stability pH, at 25°C	6.6	-			
Langelier Index	0.3	scaling		>0=scaling, <0	=corrosive, 0=stable
Ryznar Index	6.4	scaling		<6.5=scaling, >	7,5=corrosive, <u>></u> 6.5
Corrosivity ratio	21.5	increasing corros	sive tendency	Applies to wate	er in the pH range 7

≥6.5 and <7.5=stable

400

2.0

2.0

1000

10

10

ige 7-8

which also contains dissolved oxygen

ratios <0.2 no corrosive properties ratios >0.2 increasing corrosive tendency

Approved Technical Signatory Ms. Manuela Mayer

This test report is only valid without any alterations and shall not be published or reproduced except in full, with written consent of the Page 1 of 3 laboratory.

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Remark:

Overall classification of water, considering only constituents that have been tested for: Group D: high risk or water unsuitable for human consumption

Interpretation based on guidelines for the evaluation of drinking water for human consumption, DWA, Namibia, April 1988 and South African Water Quality Guidelines Volume 5: Agricultural water use: Livestock watering, Second Edition, 1996

For practical reasons, the guidelines are divided into four groups. The highest group assigned to any of the constituents determines the classification of the water as a whole. Group A: excellent quality water Group B: good quality water Group C: low risk water Group D: high risk or water unsuitable for human consumption

Ideally water should be either Group A or Group B. If water is classified as Group C, the situation is not yet critical, but attention should be given to those constituents over the Group B limit. If however, the water is classified as Group D urgent and immediate attention is required to reduce the levels of the problem constituents in the water to suitable levels.

Sample acceptance:Sample was collected in bottles provided by the laboratory.
Sample was suitable for testing

Approved Technical Signatory

Ms. Manuela Mayer This test report is only valid without any alterations and shall not be published or reproduced except in full, with written consent of the laboratory. Page 2 of 3

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Assessment of water quality for human consumption

Naturally occurring chemicals that are of health significance in drinking water

Fluoride: Exposure to high levels of fluoride, which occurs naturally, can lead to mottling of teeth and, in severe cases, crippling skeletal fluorosis.

1.0-1.5 mg/l fluoride: slight mottling of dental enamel may occur in sensitive individuals. No other health effects are expected

Chemicals from agricultural activities that are of health significance in drinking water Nitrate and nitrite: In water it has been associated with methaemoglobinaemia, especially in bottle-fed infants >20 mg/l nitrate as N: methemoglobinaemia occurs in infants. Occurrence of mucous membrane irritation in adults

Some of the naturally occurring chemicals which occur in drinking water at concentrations below those at which toxic effects may occur.

Chloride: high concentrations of chloride give a salty taste to water. Concentrations in excess of 250 mg/l are increasingly likely to be detected by taste.

Hardness: Depending on the interaction of other factors, such as, pH and alkalinity, water with a hardness above approximately 200 mg/l may cause scale deposition in the pipe work and tanks. On heating, hard waters form deposits of calcium carbonate scale.

pH: Optimum pH 6.5-8.

pH does not exert direct health effects, but may exert indirect health effects via metal solubility.

Sodium: The average taste threshold for sodium is about 200 mg/l.

Sulphate: It is generally considered that the taste impairment is minimal at levels below 250 mg/l.

Magnesium: The average taste threshold for magnesium is about 70 mg/l

Total dissolved solids: The palatability of water with a TDS level of less than 600 mg/l is generally considered to be good; drinking water becomes significantly and increasingly unpalatable at TDS levels greater than about 1000 mg/l.

Turbidity is a measure of the light-scattering ability of water and is indicative of the concentration of suspended matter in water.

Microorganisms are often associated with turbidity, hence low turbidity minimises the potential for transmission of infectious diseases. Turbidity also affects the aesthetic quality of water.

Turbidity in water is caused by the presence of suspended matter which usually consists of a mixture of inorganic matter, such as clay and soil particles and organic matter.

Turbidity may also be associated with the presence of inorganic ions such as manganese(II) and iron(II).

The consumption of turbid water *per se* does not have any direct health effects, but associated effects due to microbial contamination or the ingestion of substances bound to particulate matter, do.

Aesthetic effects (appearance, taste, odour) of turbidity can be mitigated or removed by decantation or by filtration (or by both), accelerated, if necessary, by previous aeration

Approved Technical Signatory Ms. Manuela Mayer This test report is only valid without a

This test report is only valid without any alterations and shall not be published or reproduced except in full, with written consent of the laboratory. Page 3 of 3

Walvis Bay:

walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

TEST REPORT

To:	Digby Wells Enviro	onmental SA (Pty) Ltd.							
48 Grosvenor Road				Date received: 26/Jan/22						
Brtanston 2191				Date	e analysed:	8 February -	28 March 202	22		
	South Africa			Date reported: 29/Mar/22						
Attn:	Ms Megan Edwards			Client Ref	erence no.:	AFT-7220				
e-mail:	megan.edwards@digb	ywells.com		Que	otation no.:	QU-6835				
Tel:	+27 11 789 9495			Lab	Reference:	1220280				
				Enq	uiries: Ms M	lanuela Mayer				
Sample det	ails	borehole water								
Location of	sampling point	Uis, Afritin mine								
Description	of sampling point	BH8-4								
Date of san	npling	2022/01; 9:00								
Test item n	umber	1220280/34								
					Re	ecommended	maximum li	imits		
					Hu	man consum	ption	Livestock		
Parameter		Value	Units	Classification	Group A	Group B	Group C	watering		
рН		7.0		А	6-9	5.5-9.5	4-11			
Electrical C	Conductivity	884	mS/m	D	150	300	400			
Turbidity		0.20	NTU	А	1	5	10			
Total Disso	lved Solids (calc.)	5143	mg/l					6000		
P-Alkalinity	/ as CaCO₃	0	mg/l							
Total Alkali	nity as CaCO ₃	185	mg/l							
Total Hardr	ness as CaCO₃	2067	mg/l	D	300	650	1300			
Ca-Hardnes	ss as $CaCO_3$	1194	mg/l	D	375	500	1000	2500		
Mg-Hardne	ss as CaCO₃	873	mg/l	D	290	420	840	2057		
Chloride as	s Cl ⁻	1982	mg/l	D	250	600	1200	1500-3000		
Fluoride as	F	1.3	mg/l	А	1.5	2.0	3.0	2.0-6.0		
Sulphate as	s SO ₄ ²⁻	1139	mg/l	С	200	600	1200	1000		
Nitrate as N	1	10	mg/l	А	10	20	40	100		
Nitrite as N		1.0	mg/l					10		
Ammonium	n as N	2.1	mg/l							
Sodium as	Na	1127	mg/l	D	100	400	800	2000		
Potassium	as K	48	mg/l	A	200	400	800			
Magnesium	n as Mg	212	mg/l	D	70	100	200	500		
Calcium as	Ca	478	mg/l	D	150	200	400	1000		
Manganese	e as Mn	<0.01	mg/l	Α	0.05	1.0	2.0	10		

А

0.1

1.0

<6.5=scaling, >7,5=corrosive, ≥6.5 and <7.5=stable

>0=scaling, <0=corrosive, 0=stable

Applies to water in the pH range 7-8

which also contains dissolved oxygen ratios <0.2 no corrosive properties ratios >0.2 increasing corrosive tendency

2.0

10

Marp

Iron as Fe

Stability pH, at 25°C

Langelier Index

Corrosivity ratio

Ryznar Index

Approved Technical Signatory Ms. Manuela Mayer

This test report is only valid without any alterations and shall not be published or reproduced except in full, with written consent of the laboratory. Page 1 of 3

increasing corrosive tendency

0.02

6.6

0.4

6.3

21.5

mg/l

scaling

scaling

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Remark:

Overall classification of water, considering only constituents that have been tested for: Group D: high risk or water unsuitable for human consumption

Interpretation based on guidelines for the evaluation of drinking water for human consumption, DWA, Namibia, April 1988 and South African Water Quality Guidelines Volume 5: Agricultural water use: Livestock watering, Second Edition, 1996

For practical reasons, the guidelines are divided into four groups. The highest group assigned to any of the constituents determines the classification of the water as a whole. Group A: excellent quality water Group B: good quality water Group C: low risk water Group D: high risk or water unsuitable for human consumption

Ideally water should be either Group A or Group B. If water is classified as Group C, the situation is not yet critical, but attention should be given to those constituents over the Group B limit. If however, the water is classified as Group D urgent and immediate attention is required to reduce the levels of the problem constituents in the water to suitable levels.

Sample acceptance:Sample was collected in bottles provided by the laboratory.
Sample was suitable for testing

Approved Technical Signatory

Ms. Manuela Mayer This test report is only valid without any alterations and shall not be published or reproduced except in full, with written consent of the laboratory. Page 2 of 3

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Assessment of water quality for human consumption

Naturally occurring chemicals that are of health significance in drinking water

Fluoride: Exposure to high levels of fluoride, which occurs naturally, can lead to mottling of teeth and, in severe cases, crippling skeletal fluorosis.

1.0-1.5 mg/l fluoride: slight mottling of dental enamel may occur in sensitive individuals. No other health effects are expected

Chemicals from agricultural activities that are of health significance in drinking water Nitrate and nitrite: In water it has been associated with methaemoglobinaemia, especially in bottle-fed infants 10-20 mg/l nitrate as N: methhaemoglobinaemia may occur in infants. No effects in adults.

Some of the naturally occurring chemicals which occur in drinking water at concentrations below those at which toxic effects may occur.

Chloride: high concentrations of chloride give a salty taste to water. Concentrations in excess of 250 mg/l are increasingly likely to be detected by taste.

Hardness: Depending on the interaction of other factors, such as, pH and alkalinity, water with a hardness above approximately 200 mg/l may cause scale deposition in the pipe work and tanks. On heating, hard waters form deposits of calcium carbonate scale.

pH: Optimum pH 6.5-8.

pH does not exert direct health effects, but may exert indirect health effects via metal solubility.

Sodium: The average taste threshold for sodium is about 200 mg/l.

Sulphate: It is generally considered that the taste impairment is minimal at levels below 250 mg/l.

Magnesium: The average taste threshold for magnesium is about 70 mg/l

Total dissolved solids: The palatability of water with a TDS level of less than 600 mg/l is generally considered to be good; drinking water becomes significantly and increasingly unpalatable at TDS levels greater than about 1000 mg/l.

Turbidity is a measure of the light-scattering ability of water and is indicative of the concentration of suspended matter in water.

Microorganisms are often associated with turbidity, hence low turbidity minimises the potential for transmission of infectious diseases. Turbidity also affects the aesthetic quality of water.

Turbidity in water is caused by the presence of suspended matter which usually consists of a mixture of inorganic matter, such as clay and soil particles and organic matter.

Turbidity may also be associated with the presence of inorganic ions such as manganese(II) and iron(II).

The consumption of turbid water *per se* does not have any direct health effects, but associated effects due to microbial contamination or the ingestion of substances bound to particulate matter, do.

Aesthetic effects (appearance, taste, odour) of turbidity can be mitigated or removed by decantation or by filtration (or by both), accelerated, if necessary, by previous aeration

Approved Technical Signatory Ms. Manuela Mayer This test report is only valid without any laboratory.

This test report is only valid without any alterations and shall not be published or reproduced except in full, with written consent of the laboratory. Page 3 of 3

Walvis Bay:

walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

TEST REPORT

To: Digby Wells Environmental SA (Pty) Ltd.									
48 Grosvenor Road				Dat	e received:	26/Jan/22			
Brtanston 2191				Date analysed: 8 February - 28 March 2022					
	South Africa			Date reported: 29/Mar/22					
Attn:	Ms Megan Edwards			Client Bef	erence no :	ΔFT-7220			
e-mail:	megan edwards@digh	wwells com			otation no :	011-6835			
	1109a11.00Wa105@0190	ywens.com		L ah	Reference:	1220280			
Tel.	+27 11 703 3433			Eab	uirios: Mc M	Izzozoo Ianuela Mayor			
Somplo doi	toilo	borobolo wator		Liiq		lanuela Mayer			
Sample del	ans Ecompling point	Llic Afritin mine							
Description	r sampling point								
Description	n of Sampling point	2022/01 - 0.00							
Tost itom n	nping numbor	1220280/35							
Test item i		1220200/00			Be	commended	maximum li	imits	
				Human consumption				Livestock	
Parameter		Value	Units	Classification	Group A	Group B	Group C	watering	
рН		7.0		A	6-9	5.5-9.5	4-11	<u> </u>	
Electrical C	Conductivity	898	mS/m	D	150	300	400		
Turbidity	•	0.20	NTU	А	1	5	10		
Total Disso	olved Solids (calc.)	5193	mg/l					6000	
P-Alkalinity	/ as CaCO₃	0	mg/l						
Total Alkal	inity as CaCO ₃	190	mg/l						
Total Hard	ness as CaCO ₃	2094	mg/l	D	300	650	1300		
Ca-Hardnes	ss as CaCO ₃	1196	mg/l	D	375	500	1000	2500	
Mg-Hardne	ss as CaCO₃	898	mg/l	D	290	420	840	2057	
Chloride as	s Cl ⁻	1982	mg/l	D	250	600	1200	1500-3000	
Fluoride as	; F	1.3	mg/l	А	1.5	2.0	3.0	2.0-6.0	
Sulphate as	s SO ₄ ²⁻	1144	mg/l	С	200	600	1200	1000	
Nitrate as N	N	9.8	mg/l	А	10	20	40	100	
Nitrite as N	l	1.1	mg/l					10	
Ammonium	n as N	2.2	mg/l						
Sodium as	Na	1162	mg/l	D	100	400	800	2000	
Potassium	as K	49	mg/l	А	200	400	800		
Magnesium	n as Mg	218	mg/l	D	70	100	200	500	
Calcium as Ca		479	mg/l	D	150	200	400	1000	

0.05

0.1

А

А

2.0

2.0

1.0

1.0

<6.5=scaling, >7,5=corrosive, ≥6.5 and ≤7.5=stable

>0=scaling, <0=corrosive, 0=stable

Applies to water in the pH range 7-8

which also contains dissolved oxygen ratios <0.2 no corrosive properties ratios >0.2 increasing corrosive tendency 10

10

Manganese as Mn

Stability pH, at 25°C

Langelier Index

Corrosivity ratio

Ryznar Index

Iron as Fe

Ms. Manuela Mayer This test report is only valid without any alterations and shall not be published or reproduced except in full, with written consent of the laboratory. Page 1 of 3

increasing corrosive tendency

0.01

0.01

6.6

0.4

6.2

21.0

mg/l

mg/l

scaling

scaling

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Remark:

Overall classification of water, considering only constituents that have been tested for: Group D: high risk or water unsuitable for human consumption

Interpretation based on guidelines for the evaluation of drinking water for human consumption, DWA, Namibia, April 1988 and South African Water Quality Guidelines Volume 5: Agricultural water use: Livestock watering, Second Edition, 1996

For practical reasons, the guidelines are divided into four groups. The highest group assigned to any of the constituents determines the classification of the water as a whole. Group A: excellent quality water Group B: good quality water Group C: low risk water Group D: high risk or water unsuitable for human consumption

Ideally water should be either Group A or Group B. If water is classified as Group C, the situation is not yet critical, but attention should be given to those constituents over the Group B limit. If however, the water is classified as Group D urgent and immediate attention is required to reduce the levels of the problem constituents in the water to suitable levels.

Sample acceptance:Sample was collected in bottles provided by the laboratory.
Sample was suitable for testing

Approved Technical Signatory

Ms. Manuela Mayer This test report is only valid without any alterations and shall not be published or reproduced except in full, with written consent of the laboratory. Page 2 of 3

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Assessment of water quality for human consumption

Naturally occurring chemicals that are of health significance in drinking water

Fluoride: Exposure to high levels of fluoride, which occurs naturally, can lead to mottling of teeth and, in severe cases, crippling skeletal fluorosis.

1.0-1.5 mg/l fluoride: slight mottling of dental enamel may occur in sensitive individuals. No other health effects are expected

Chemicals from agricultural activities that are of health significance in drinking water

Nitrate and nitrite: In water it has been associated with methaemoglobinaemia, especially in bottle-fed infants 6-10 mg/l nitrate as N: rare instances of methhaemoglobinaemia in infants; no effects in adults. Concentrations in this range generally well tolerated.

Some of the naturally occurring chemicals which occur in drinking water at concentrations below those at which toxic effects may occur.

Chloride: high concentrations of chloride give a salty taste to water. Concentrations in excess of 250 mg/l are increasingly likely to be detected by taste.

Hardness: Depending on the interaction of other factors, such as, pH and alkalinity, water with a hardness above approximately 200 mg/l may cause scale deposition in the pipe work and tanks. On heating, hard waters form deposits of calcium carbonate scale.

pH: Optimum pH 6.5-8.

pH does not exert direct health effects, but may exert indirect health effects via metal solubility.

Sodium: The average taste threshold for sodium is about 200 mg/l.

Sulphate: It is generally considered that the taste impairment is minimal at levels below 250 mg/l.

Magnesium: The average taste threshold for magnesium is about 70 mg/l

Total dissolved solids: The palatability of water with a TDS level of less than 600 mg/l is generally considered to be good; drinking water becomes significantly and increasingly unpalatable at TDS levels greater than about 1000 mg/l.

Turbidity is a measure of the light-scattering ability of water and is indicative of the concentration of suspended matter in water.

Microorganisms are often associated with turbidity, hence low turbidity minimises the potential for transmission of infectious diseases. Turbidity also affects the aesthetic quality of water.

Turbidity in water is caused by the presence of suspended matter which usually consists of a mixture of inorganic matter, such as clay and soil particles and organic matter.

Turbidity may also be associated with the presence of inorganic ions such as manganese(II) and iron(II). The consumption of turbid water *per se* does not have any direct health effects, but associated effects due

to microbial contamination or the ingestion of substances bound to particulate matter, do.

Aesthetic effects (appearance, taste, odour) of turbidity can be mitigated or removed by decantation or by filtration (or by both), accelerated, if necessary, by previous aeration

Approved Technical Signatory Ms. Manuela Mayer This test report is only valid without a

This test report is only valid without any alterations and shall not be published or reproduced except in full, with written consent of the laboratory. Page 3 of 3

Walvis Bay:

walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

TEST REPORT

To:	Digby Wells Enviro	nmental SA (Pty) Ltd.						
48 Grosvenor Road				Date received: 26/Jan/22					
Brtanston 2191				Date	e analysed:	8 February -	28 March 202	22	
	South Africa			Date reported: 29/Mar/22					
Attn:	Ms Megan Edwards			Client Ref	erence no.:	AFT-7220			
e-mail:	megan.edwards@digb	ywells.com		Que	otation no.:	QU-6835			
Tel:	+27 11 789 9495		Lab Reference: I220280						
				Enq	uiries: Ms M	lanuela Mayer			
Sample det	tails	borehole water							
Location of	f sampling point	Uis, Afritin mine							
Description	n of sampling point	K5-PIT							
Date of san	npling	2022/01; 12:00							
Test item n	number	1220280/36							
					Re	ecommended	maximum li	imits	
					Hu	man consum	ption	Livestock	
Parameter		Value	Units	Classification	Group A	Group B	Group C	watering	
рН		7.5		A	6-9	5.5-9.5	4-11		
Electrical C	Conductivity	3270	mS/m	D	150	300	400		
Turbidity		4.8	NTU	В	1	5	10		
Total Disso	olved Solids (calc.)	22763	mg/l					6000	
P-Alkalinity	γ as CaCO $_3$	0	mg/l						
Total Alkali	inity as CaCO ₃	133	mg/l						
Total Hardr	ness as CaCO ₃	6657	mg/l	D	300	650	1300		
Ca-Hardnes	ss as $CaCO_3$	2445	mg/l	D	375	500	1000	2500	
Mg-Hardne	ss as CaCO ₃	4213	mg/l	D	290	420	840	2057	
Chloride as	s Cl ⁻	9102	mg/l	D	250	600	1200	1500-3000	
Fluoride as	s F	1.9	mg/l	В	1.5	2.0	3.0	2.0-6.0	
Sulphate as	s SO ₄ ²⁻	5830	mg/l	D	200	600	1200	1000	
Nitrate as N	N	1.4	mg/l	A	10	20	40	100	
Nitrite as N	l	0.22	mg/l					10	
Ammonium	n as N	1.2	mg/l						
Sodium as	Na	5505	mg/l	D	100	400	800	2000	
Potassium	as K	236	mg/l	В	200	400	800		
Magnesium	n as Mg	1023	mg/l	D	70	100	200	500	
Calcium as	s Ca	979	mg/l	D	150	200	400	1000	
Manganese	e as Mn	0.21	mg/l	В	0.05	1.0	2.0	10	

Approved Technical Signatory Ms. Manuela Mayer

Iron as Fe

Stability pH, at 25°C

Langelier Index

Corrosivity ratio

Ryznar Index

This test report is only valid without any alterations and shall not be published or reproduced except in full, with written consent of the laboratory. Page 1 of 3

increasing corrosive tendency

0.18

6.5

1.0

5.5

142.3

mg/l

scaling

scaling

В

0.1

1.0

<6.5=scaling, >7,5=corrosive, ≥6.5 and <7.5=stable

>0=scaling, <0=corrosive, 0=stable

Applies to water in the pH range 7-8

which also contains dissolved oxygen ratios <0.2 no corrosive properties ratios >0.2 increasing corrosive tendency

2.0

10

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Remark:

Overall classification of water, considering only constituents that have been tested for: Group D: high risk or water unsuitable for human consumption

Interpretation based on guidelines for the evaluation of drinking water for human consumption, DWA, Namibia, April 1988 and South African Water Quality Guidelines Volume 5: Agricultural water use: Livestock watering, Second Edition, 1996

For practical reasons, the guidelines are divided into four groups. The highest group assigned to any of the constituents determines the classification of the water as a whole. Group A: excellent quality water Group B: good quality water Group C: low risk water Group D: high risk or water unsuitable for human consumption

Ideally water should be either Group A or Group B. If water is classified as Group C, the situation is not yet critical, but attention should be given to those constituents over the Group B limit. If however, the water is classified as Group D urgent and immediate attention is required to reduce the levels of the problem constituents in the water to suitable levels.

Sample acceptance:Sample was collected in bottles provided by the laboratory.
Sample was suitable for testing

Approved Technical Signatory

Ms. Manuela Mayer This test report is only valid without any alterations and shall not be published or reproduced except in full, with written consent of the laboratory. Page 2 of 3

Analytical Laboratory Services

Windhoek: info@analab.com.na Tel +264 61 210 132 Cell +264 81 611 8843 71 Newcastle Street

Walvis Bay: walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Assessment of water quality for human consumption

Naturally occurring chemicals that are of health significance in drinking water

Fluoride: Exposure to high levels of fluoride, which occurs naturally, can lead to mottling of teeth and, in severe cases, crippling skeletal fluorosis.

1.5-3.5 mg/l fluoride: the threshold for marked dental mottling with associated tooth damage due to softening of enamel is 1.5mg/L. Above this, mottling and tooth damage will probably be noticeable in most continuous users of the water. No other health effects occur.

Chemicals from agricultural activities that are of health significance in drinking water Nitrate and nitrite: In water it has been associated with methaemoglobinaemia, especially in bottle-fed infants 0-6 mg/l nitrate as N: no adverse health effects

Some of the naturally occurring chemicals which occur in drinking water at concentrations below those at which toxic effects may occur.

Chloride: high concentrations of chloride give a salty taste to water. Concentrations in excess of 250 mg/l are increasingly likely to be detected by taste.

Hardness: Depending on the interaction of other factors, such as, pH and alkalinity, water with a hardness above approximately 200 mg/l may cause scale deposition in the pipe work and tanks. On heating, hard waters form deposits of calcium carbonate scale.

pH: Optimum pH 6.5-8.

pH does not exert direct health effects, but may exert indirect health effects via metal solubility.

Sodium: The average taste threshold for sodium is about 200 mg/l.

Sulphate: It is generally considered that the taste impairment is minimal at levels below 250 mg/l.

Magnesium: The average taste threshold for magnesium is about 70 mg/l

Total dissolved solids: The palatability of water with a TDS level of less than 600 mg/l is generally considered to be good; drinking water becomes significantly and increasingly unpalatable at TDS levels greater than about 1000 mg/l.

Turbidity is a measure of the light-scattering ability of water and is indicative of the concentration of suspended matter in water.

Microorganisms are often associated with turbidity, hence low turbidity minimises the potential for transmission of infectious diseases. Turbidity also affects the aesthetic quality of water.

Turbidity in water is caused by the presence of suspended matter which usually consists of a mixture of inorganic matter, such as clay and soil particles and organic matter.

Turbidity may also be associated with the presence of inorganic ions such as manganese(II) and iron(II). The consumption of turbid water *per se* does not have any direct health effects, but associated effects due

to microbial contamination or the ingestion of substances bound to particulate matter, do.

Aesthetic effects (appearance, taste, odour) of turbidity can be mitigated or removed by decantation or by filtration (or by both), accelerated, if necessary, by previous aeration

Approved Technical Signatory Ms. Manuela Mayer This test report is only valid without ar laboratory.

This test report is only valid without any alterations and shall not be published or reproduced except in full, with written consent of the laboratory. Page 3 of 3

Windhoek:

info@analab.com.na Tel +264 61 210 132 Cell +264 81 611 8843 71 Newcastle Street

Walvis Bay:

walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Summary of test methods - Water Quality

Determinant	Unit	DL	Technique	Method reference
Absorbed oxygen	mg/I O ₂	1	titrimetric	SANS 5220:2005
Acidity	mg/I CaCO ₃	20	titrimetric	AWWA 2310 B
Alkalinity	mg/I CaCO ₃	20	titrimetric	AWWA 2320 B
Ammonium	mg/l N	0.02	colorimetric	AWWA 4500-NH ₃ F / modified Berthelot
Bicarbonate & Carbonate	mg/I CaCO ₃	1	by calculation	
Biological oxygen demand, 5-day	mg/I O ₂	2	electrometric	AWWA 5210 B
Biological oxygen demand, carbonacious	mg/I O ₂	2	electrometric	AWWA 5210 B
Bromide & Iodide	mg/l Br ⁻	0.01	iodometric	P. Höfer
Chloride	mg/l Cl ⁻	1	argentometric	AWWA 4500-CI ⁻ B
Chlorine, free and total	mg/I Cl ₂	0.05	colorimetric	AWWA 4500-CI G
Chlorophyll a	μg/L	0.01	spectrophotometric	ISO 10260:1992 E
Chemical oxygen demand	mg/I O ₂	1	colorimetric	AWWA 5220 D
Colour	Pt	10	colorimetric	AWWA Pt-Co-2120 B
Cyanide	mg/I CN	0.02	colorimetric	AWWA 4500-CN E
Density	mg/l g/ml	-	gravimetric	METH W 016
Dissolved oxygen	mg/I O ₂	0.1	electrometric	AWWA 4550-O G
Electrical conductivity	mS/m	0.1	electrometric	AWWA 2510 B
Fat, oil & grease	mg/l	1	extraction/gavimetric	AWWA 5520 B
Fixed and volatile solids, ignited at 550°C	mg/l	1	gravimetric	AWWA 2540 E
Fluoride	mg/l F	0.1	electrometric	AWWA 4500-F C
Hardness	mg/I CaCO ₃	1	by calculation	AWWA 2340 B
Hexavalent chromium	mg/l Cr	0.02	colorimetric	AWWA 3500-Cr B
Hydrolysable phosphates	mg/l P	0.01	digestion, PO4	AWWA 4500-P B.2 + E
Kjeldahl nitrogen	mg/l N	0.5	by calculation	
Molybdosilicate	mg/I SiO ₂	0.4	colorimetric	AWWA 4500-Si C
Nitrate	mg/l N	0.5	colorimetric	Spectroquant / AWWA 4500-NO3 E
Nitrite	mg/l N	0.01	colorimetric	AWWA 4500-NO2 B
Oxidation reduction potential (Redox)	mV	-	electrometric	AWWA 2580 B
рН		-	electrometric	AWWA 4500-H ⁺ B
Phenols	mg/l Phenol	0.05	colorimetric	ASTM D1783-01, B
Reactive phosphorous	mg/I PO ₄	0.03	colorimetric	AWWA 4500-P E
Settable solids	mg/l	1	gravimetric	AWWA 2540 F
Sulfide	mg/l S ²⁻	0.05	colorimetric	AWWA 4500-S ²⁻ D
Sulfite	mg/l SO3 ²⁻	2	iodometric	AWWA 4500-SO ₃ ²⁻ B
Sulphate	mg/I SO ₄	1	nephelometric / colorimetric	AWWA 4500-SO4 E / F
Total dissolved solids	mg/l	1	gravimetric	AWWA 2540 C
Total nitrogen	mg/l N	0.5	digestion, NO3	EN ISO 11905-1:1997
Total phosphorous	mg/l P	0.01	digestion, PO4	AWWA 4500-P B.5 + E
Total solids	mg/l	1	gravimetric	AWWA 2540 B
Total suspended solids	mg/l	1	gravimetric	AWWA 2540 D
Turbidity	NTU	0.05	nephelometric	AWWA 2130 B
UV absorbing organic constituents at 254nm	cm ⁻¹	-	colorimetric	AWWA 5910 B

Aluminium	mg/I Al	0.01	A	WWA ICP-3500-AI C
Antimony	mg/l Sb	0.01	A	WWA ICP-3500-Sb C
Arsenic	mg/l As	0.01	A	WWA ICP-3500-As D
Barium	mg/l Ba	0.01	A	WWA ICP-3500-Ba C
Beryllium	mg/l B	0.01	A	WWA ICP-3500-Be
Bismuth	mg/l Bi	0.01	A	WWA ICP-3500-Bi
Boron	mg/I B	0.01	A	WWA ICP-3500-B D
Cadmium	mg/l Cd	0.01	A	WWA ICP-3500-Cd C

Windhoek:

info@analab.com.na Tel +264 61 210 132 Cell +264 81 611 8843 71 Newcastle Street

Walvis Bay:

walvisbaylab@analab.com.na Cell +264 81 122 1588 Unit 16, Ben Amathila Ave.

PO Box 86782, Windhoek, Namibia

Calcium	mg/l Ca	0.1	AWWA ICP-3500-Ca C
Chromium (total)	mg/I Cr	0.01	AWWA ICP-3500-Cr C
Cobalt	mg/I Co	0.01	AWWA ICP-3500-Co C
Copper	mg/I Cu	0.01	AWWA ICP-3500-Cu C
Gold	mg/l Au	0.01	AWWA ICP-3500-Au
Iron	mg/l Fe	0.01	AWWA ICP-3500-Fe C
Lead	mg/l Pb	0.01	AWWA ICP-3500-Pb C
Lithium	mg/l Li	0.01	AWWA ICP-3500-Li C
Magnesium	mg/l Mg	0.1	AWWA ICP-3500-Mg C
Manganese	mg/l Mn	0.01	AWWA ICP-3500-Mn C
Mercury	mg/I Hg	0.01	AWWA ICP-3500-Hg
Molybdenum	mg/I Mo	0.01	AWWA ICP-3500-Mo C
Nickel	mg/l Ni	0.01	AWWA ICP-3500-Ni C
Potassium	mg/I K	0.1	AWWA ICP-3500-K C
Rubidium	mg/I Rb	0.01	ICP-OES
Selenium	mg/I Se	0.01	AWWA ICP-3500-Se I
Silica	mg/l Si	0.01	ICP-OES
Silver	mg/l Ag	0.01	AWWA ICP-3500-Ag
Sodium	mg/l Na	0.1	AWWA ICP-3500-Na C
Strontium	mg/I Sr	0.01	AWWA ICP-3500-Sr C
Thallium	mg/l Th	0.01	AWWA ICP-3500-TI C
Tellurium	mg/I Te	0.01	AWWA ICP-3500-Te
Tin	mg/I Sn	0.01	AWWA ICP-3500-Sn
Titanium	mg/I Ti	0.01	AWWA ICP-3500-Ti
Uranium	mg/I U	0.01	AWWA ICP-3500-U
Vanadium	mg/I V	0.01	AWWA ICP-3500-V C
Zinc	mg/I Zn	0.01	AWWA ICP-3500-Zn C

Lower reporting limit

These are estimated values only; accurate lower levels of detection (LLDs) (measurement as part of a method) and method detection levels (MDLs) (measurement for the whole method) still have to be established Given the varied matrices submitted to the laboratory and divers quality needs method and/or reagent blanks, performance evaluation samples and duplicate results may be included to assist in appropriate use of laboratory data.

All submitted samples are initially run undiluted unless sample dilutions are required in order to reduce or eliminate known matrix / interference effects. When an analyte concentration exceeds the calibration or linear range, the sample is re-analysed after appropriate dilution. The analyst will use the least dilution necessary to bring the analyte within the range. In both cases, a loss of sensitivity is experienced. All sample dilutions result in an increase in the lower reporting limit by a factor equal to the dilution. The less than symbol "<" is used for qualified data below the lower reporting limit.

WATERLAB (Pty) Ltd

Reg. No.: 1983/009165/07 V.A.T. No.: 4130107891

23B De Havilland Crescent

Persequor Techno Park

Meiring Naudé Drive

Pretoria

P.O. Box 283, Persequor Park, 0020 Tel: +2712 - 349 - 1066 Fax: +2786 - 654 - 2570 e-mail: admin@waterlab.co.za

CERTIFICATE OF ANALYSES GENERAL WATER QUALITY PARAMETERS

Date received: 2022-02-04		Date completed: 2022-02-11
Project number: 1000	Report number: 107136	Order number: AFT7220
Client name: Digby Wells E	Environmental	Contact person: Ms. M Edwards
Address: Turnberry Office P	Park, 48 Grosvenor Rd, Bryanston, JHB 219	1 e-mail: megan.edwards@digbywells.com
Telephone: 011 789 9498	Facsimile: 011 069 6801	Mobile:

Analyses in mg/l			Sample Identification
(Unless specified otherwise)		Method	Rain 2
Sample Number		Identification	152421
Date\Time Sampled			N/A
Chloride as Cl	А	WLAB046	9

A. van de Wetering - Chemical Technical Signatory

A = Accredited N = Not Accredited S = Subcontracted Tests marked "Not SANAS Accredited" in this report are not included in the SANAS Scope of Accreditation for this Laboratory. Results marked "Subcontracted Test" in this report are not included in the SANAS Scope of Accreditation for this Laboratory.

Sample condition acceptable unless specified on the report.

The information contained in this report is relevant only to the sample/samples supplied to WATERLAB (Pty) Ltd. Any further use of the above information is not the responsibility of WATERLAB (Pty) Ltd. Except for the full report, part of this report may not be reproduced without written approval of WATERLAB (Pty) Ltd. Details of sample conducted by Waterlab (PTY) Ltd according to WLAB/Sampling Plan and Procedures/SOP are available on request.

Appendix C: Aquifer Test Results

Aquifer Tested Borehole	Test	Observation Borehole	Comments
BH1	CDT1	BH2	Observation water levels decreased by 8 cm during the aquifer test
BH1	CDT1	BH10	Observation water levels were not affected during the CDT test
BH1	CDT2	BH2	Observation water levels decreased by 12 m during the aquifer test
BH1	CDT2	BH10	Observation water levels were not affected during the CDT test
BH2	CDT1	BH1	Observation water levels were not affected during the CDT test
BH2	CDT1	BH10	Observation water levels were not affected during the CDT test
BH3	CDT1	BH4	Observation water levels were not affected during the CDT test
BH3	CDT1	BH6	Observation water levels were not affected during the CDT test
BH3	CDT2	BH4	Observation water levels decreased by 20 cm during the aquifer test
BH3	CDT2	BH6	Observation water levels were not affected during the CDT test
BH4	CDT1	BH3	Observation water levels decreased by 21 cm during the aquifer test
BH4	CDT1	BH6	Observation water levels decreased by 3 cm during the aquifer test
BH6	CDT1	BH3	Observation water levels were not affected during the CDT test
BH6	CDT1	BH4	Observation water levels decreased by 7 cm during the aquifer test
BH6	CDT2	BH3	Observation water levels were not affected during the CDT test
BH6	CDT2	BH4	Observation water levels decreased by 5 cm during the aquifer test
BH6	CDT3	BH3	Observation water levels were not affected during the CDT test
BH6	CDT3	BH4	Observation water levels decreased by 61 cm during the aquifer test
BH8	CDT1	BH11	Observation water levels decreased by 21 cm during the aquifer test
BH9	CDT1	BH10	Observation water levels decreased by 30 cm during the aquifer test
BH9	CDT1	BH12	Observation water levels decreased by 3 cm during the aquifer test
BH10	CDT1	BH1	Observation water levels not measured
BH10	CDT1	BH2	Observation water levels not measured
BH10	CDT2	BH1	Observation water levels were not affected during the CDT test, water levels were recovering from abstraction pumping prior to
BH10	CDT2	BH2	Observation water levels were not affected during the CDT test, water levels were recovering from abstraction pumping prior to
BH11	CDT1	BH8	Observation water levels decreased by 18 cm during the aquifer test
BH12	CDT1	BH9	Observation water levels were not affected during the CDT, water levels were recovering from the CDT test

Observation Borehole Comments

to the CDT test
to the CDT test

BH1 CDT1 Cooper-Jacob Early

BH1 CDT1 Cooper-Jacob Late

BH1 CDT1 Theis

BH1 CDT1 Theis Recovery Early

BH1 CDT1 Theis Recovery Late

BH1 CDT1 Moench

BH1 CDT2 Cooper-Jacob Early

BH1 CDT2 Cooper-Jacob Late

BH1 CDT2 Theis

BH1 CDT2 Theis Recovery Early

BH2 CDT1 Cooper-Jacob Early

BH2 CDT1 Cooper-Jacob Late

BH2 CDT1 Theis

BH2 CDT1 Theis Recovery Early

BH2 CDT1 Moench

BH3 CDT1 Cooper-Jacob Early

BH3 CDT1 Cooper-Jacob Late

BH3 CDT1 Theis

BH3 CDT1 Theis Recovery Early

BH3 CDT1 Theis Recovery Late

BH3 CDT1 Moench

BH3 CDT2 Cooper-Jacob Early

BH3 CDT2 Cooper-Jacob Late

BH3 CDT2 Theis

BH3 CDT2 Theis Recovery Early

BH3 CDT2 Theis Recovery Late

BH3 CDT2 Moench

BH4 CDT1 Cooper-Jacob Early

BH4 CDT1 Cooper-Jacob Late

BH4 CDT1 Theis

BH4 CDT1 Theis Recovery Early

BH4 CDT1 Theis Recovery Late

BH4 CDT1 Moench

BH6 CDT1 Cooper-Jacob Early

BH6 CDT1 Cooper-Jacob Late

BH6 CDT1 Theis Early

BH6 CDT1 Theis Late

BH6 CDT1 Theis Recovery Early

BH6 CDT1 Moench

BH6 CDT2 Cooper-Jacob Early

BH6 CDT2 Cooper-Jacob Late

BH6 CDT2 Theis

BH6 CDT2 Theis Recovery Early

BH6 CDT2 Theis Recovery Late

BH6 CDT5 Cooper-Jacob Early

BH6 CDT5 Cooper-Jacob Late

BH6 CDT5 Theis

BH6 CDT5 Theis Recovery Early

BH6 CDT5 Theis Recovery Late

BH6 CDT5 Moench

BH8 CDT1 Cooper-Jacob Early

BH8 CDT1 Cooper-Jacob Late

BH8 CDT1 Theis Early

BH8 CDT1 Theis Late

BH8 CDT1 Theis Recovery Early

BH8 CDT1 Theis Recovery Late

BH8 CDT1 Moench

BH9 CDT1 Cooper-Jacob Early

BH9 CDT1 Theis Recovery Early

BH9 CDT1 Theis Recovery Late

BH9 CDT1 Moench

BH10 CDT1 Cooper-Jacob Early

BH10 CDT1 Cooper-Jacob Late

BH10 CDT1 Theis

BH10 CDT1 Theis Recovery Early

BH10 CDT1 Theis Recovery Late

BH10 CDT1 Moench

BH10 CDT2 Cooper-Jacob Early

BH10 CDT2 Theis Recovery Late

BH10 CDT2 Moench

BH11 CDT1 Cooper-Jacob Early

BH11 CDT1 Theis Early

BH11 CDT1 Theis Late

BH11 CDT1 Theis Recovery Early

BH11 CDT1 Theis Recovery Late

BH11 CDT1 Moench

BH12 CDT1 – Cooper-Jacob Late

BH12 CDT1 – Theis Recovery Early

BH12 CDT1 – Theis Recovery Late

BH12 CDT1 - Moench

Appendix D: Impact Assessment Methodology

Impact Assessment Methodology

The impact assessment methodology that will be utilised during the EIA Phase for the Project consists of two phases namely impact identification and impact significance rating.

Impacts and risks have been identified based on a description of the activities to be undertaken. Once impacts have been identified, a numerical environmental significance rating process will be undertaken that utilises the probability of an event occurring and the severity of the impact as factors to determine the significance of a particular environmental impact.

The severity of an impact is determined by taking the spatial extent, the duration and the severity of the impacts into consideration. The probability of an impact is then determined by the frequency at which the activity takes place or is likely to take place and by how often the type of impact in question has taken place in similar circumstances.

Following the identification and significance ratings of potential impacts, mitigation and management measures were incorporated into the EMP.

Details of the impact assessment methodology used to determine the significance of physical, bio-physical and socio-economic impacts are provided below.

The significance rating process follows the established impact/risk assessment formula:

And

Nature = Positive (+1) or negative (-1) impact

Note: In the formula for calculating consequence, the type of impact is multiplied by +1 for positive impacts and -1 for negative impacts

The matrix calculates the rating out of 147, whereby intensity, extent, duration and probability are each rated out of seven as indicated in Table B. The weight assigned to the various parameters is then multiplied by +1 for positive and -1 for negative impacts.

Impacts are rated prior to mitigation and again after consideration of the mitigation has been applied; post-mitigation is referred to as the residual impact. The significance of an impact is determined and categorised into one of seven categories (The descriptions of the significance ratings are presented in Table C).

It is important to note that the pre-mitigation rating takes into consideration the activity as proposed, (i.e., there may already be some mitigation included in the engineering design). If the specialist determines the potential impact is still too high, additional mitigation measures are proposed.

Rating	Intensity/Replaceability				
	Negative Impacts (Nature = -1)	Positive Impacts (Nature = +1)	Extent	Duration/Reversibility	Probability
7	Irreplaceable loss or damage to biological or physical resources or highly sensitive environments. Irreplaceable damage to highly sensitive cultural/social resources.	Noticeable, on-going natural and / or social benefits which have improved the overall conditions of the baseline.	International The effect will occur across international borders.	Permanent: The impact is irreversible, even with management, and will remain after the life of the project.	Definite: There are sound scientific reasons to expect that the impact will definitely occur. >80% probability.
6	Irreplaceable loss or damage to biological or physical resources or moderate to highly sensitive environments. Irreplaceable damage to cultural/social resources of moderate to highly sensitivity.	Great improvement to the overall conditions of a large percentage of the baseline.	<u>National</u> Will affect the entire country.	Beyond project life: The impact will remain for some time after the life of the project and is potentially irreversible even with management.	Almost certain / Highly probable: It is most likely that the impact will occur. <80% probability.

	Intensity/Rep	olaceability			Probability					
Rating	Negative Impacts (Nature = -1)	Positive Impacts (Nature = +1)	Extent	Duration/Reversibility						
5	Serious loss and/or damage to physical or biological resources or highly sensitive environments, limiting ecosystem function. Very serious widespread social impacts. Irreparable damage to highly valued items.	On-going and widespread benefits to local communities and natural features of the landscape.	Province/ Region Will affect the entire province or region.	Project Life (>15 years): The impact will cease after the operational life span of the project and can be reversed with sufficient management.	Likely: The impact may occur. <65% probability.					
4	Serious loss and/or damage to physical or biological resources or moderately sensitive environments, limiting ecosystem function. On-going serious social issues. Significant damage to structures / items of cultural significance.	Average to intense natural and / or social benefits to some elements of the baseline.	<u>Municipal Area</u> Will affect the whole municipal area.	Long term: 6-15 years and impact can be reversed with management.	Probable: Has occurred here or elsewhere and could therefore occur. <50% probability.					

	Intensity/Rep	olaceability							
Rating	Negative Impacts (Nature = -1)	Positive Impacts (Nature = +1)	Extent	Duration/Reversibility	Probability				
3	Moderate loss and/or damage to biological or physical resources of low to moderately sensitive environments and, limiting ecosystem function. On-going social issues. Damage to items of cultural significance.	Average, on-going positive benefits, not widespread but felt by some elements of the baseline.	<u>Local</u> Local extending only as far as the development site area.	Medium term: 1-5 years and impact can be reversed with minimal management.	Unlikely: Has not happened yet but could happen once in the lifetime of the project, therefore there is a possibility that the impact will occur. <25% probability.				
2	Minor loss and/or effects to biological or physical resources or low sensitive environments, not affecting ecosystem functioning. Minor medium-term social impacts on local population. Mostly repairable. Cultural functions and processes not affected.	Low positive impacts experience by a small percentage of the baseline.	<u>Limited</u> Limited to the site and its immediate surroundings.	Short term: Less than 1 year and is reversible.	Rare / improbable: Conceivable, but only in extreme circumstances. The possibility of the impact materialising is very low as a result of design, historic experience or implementation of adequate mitigation measures. <10% probability.				

	Intensity/Rep	olaceability								
Rating	Negative Impacts (Nature = -1)	Positive Impacts (Nature = +1)	Extent	Duration/Reversibility	Probability					
1	Minimal to no loss and/or effect to biological or physical resources, not affecting ecosystem functioning. Minimal social impacts, low-level repairable damage to commonplace structures.	Some low-level natural and / or social benefits felt by a very small percentage of the baseline.	<u>Very limited/Isolated</u> Limited to specific isolated parts of the site.	Immediate: Less than 1 month and is completely reversible without management.	Highly unlikely / None: Expected never to happen. <1% probability.					

Table B: Probability / Consequence Matrix

Signif	cance																																			
-147	-140	-133	-126	-119	-112	-105	-98	-91	-84	-77	-70	-63	-56	-49	-42	-35	-28	-21	21	28	35	42	49	56	63	70 7	7 84	1 91	98	105	112	119	126	133	140	147
-126	-120	-114	-108	-102	-96	-90	-84	-78	-72	-66	-60	-54	-48	-42	-36	-30	-24	-18	18	24	30	36	42	48	54 6	6 6	6 72	2 78	84	90	96	102	108	114	120	126
-105	-100	-95	-90	-85	-80	-75	-70	-65	-60	-55	-50	-45	-40	-35	-30	-25	-20	-15	15	20	25	30	35	40	45 5	50 5	5 60) 65	70	75	80	85	90	95	100	105
-84	-80	-76	-72	-68	-64	-60	-56	-52	-48	-44	-40	-36	-32	-28	-24	-20	-16	-12	12	16	20	24	28	32	36 4	40 4	4 48	3 52	56	60	64	68	72	76	80	84
-63	-60	-57	-54	-51	-48	-45	-42	-39	-36	-33	-30	-27	-24	-21	-18	-15	-12	-9	9	12	15	18	21	24	27 3	30 3	3 36	3 39	42	45	48	51	54	57	60	63
-42	-40	-38	-36	-34	-32	-30	-28	-26	-24	-22	-20	-18	-16	-14	-12	-10	-8	-6	6	8	10	12	14	16	18 2	20 2	2 24	1 26	28	30	32	34	36	38	40	42
-21	-20	-19	-18	-17	-16	-15	-14	-13	-12	-11	-10	-9	-8	-7	-6	-5	-4	-3	3	4	5	6	7	8	9	10 1	1 12	2 13	14	15	16	17	18	19	20	21
-21	-20	-19	-18	-17	-16	-15	-14	-13	-12	-11	-10	-9	-8	-7	-6	-5	-4	-3	3	4	5	6	7	8	9 1	10 1	1 12	2 13	14	15	16	17	18	19	20	21
Conse																																				

Score	Description	Rating
109 to 147	A very beneficial impact that may be sufficient by itself to justify implementation of the project. The impact may result in permanent positive change	Major (positive) (+)
73 to 108	A beneficial impact which may help to justify the implementation of the project. These impacts would be considered by society as constituting a major and usually a long-term positive change to the (natural and / or social) environment	Moderate (positive) (+)
36 to 72	A positive impact. These impacts will usually result in positive medium to long-term effect on the natural and / or social environment	Minor (positive) (+)
3 to 35	A small positive impact. The impact will result in medium to short term effects on the natural and / or social environment	Negligible (positive) (+)
-3 to -35	An acceptable negative impact for which mitigation is desirable. The impact by itself is insufficient even in combination with other low impacts to prevent the development being approved. These impacts will result in negative medium to short term effects on the natural and / or social environment	Negligible (negative) (-)
-36 to -72	A minor negative impact requires mitigation. The impact is insufficient by itself to prevent the implementation of the project but which in conjunction with other impacts may prevent its implementation. These impacts will usually result in negative medium to long-term effect on the natural and / or social environment	Minor (negative) (-)
-73 to -108	A moderate negative impact may prevent the implementation of the project. These impacts would be considered as constituting a major and usually a long-term change to the (natural and / or social) environment and result in severe changes.	Moderate (negative) (-)
-109 to -147	A major negative impact may be sufficient by itself to prevent implementation of the project. The impact may result in permanent change. Very often these impacts are immitigable and usually result in very severe effects. The impacts are likely to be irreversible and/or irreplaceable.	Major (negative) (-)

Table C: Significance Rating Description